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Discrete Fourier Transform (DFT)

• DFT is a powerful computation tool which allows us to evaluate the Fourier transform on a digital computer or
specifically designed hardware

• We notate like this

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑁 , 0 ≤ k ≤ N − 1

DFT IDFT

𝑥(𝑛) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒
𝑗2𝜋𝑘𝑛
𝑁 , 0 ≤ n ≤ N − 1

Let us define a term 𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁 which is known as twiddle factor and substitute in above equations

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘 , 0 ≤ k ≤ N − 1 𝑥(𝑛) =

1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑤𝑁
−𝑛𝑘 , 0 ≤ n ≤ N − 1

𝑋 𝑘 = 𝐷𝐹𝑇[𝑥 𝑛 ] 𝑥 𝑛 = 𝐼𝐷𝐹𝑇[𝑋 𝑘 ]
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Let us take an example

Q) Find the DFT of the sequence 𝑥 𝑛 = {1,1,0,0}
𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑁 , 0 ≤ k ≤ N − 1

𝑋 𝑘 = ෍

𝑛=0

3

𝑥 𝑛 𝑒−
𝑗2𝜋𝑘𝑛

4 , 0 ≤ k ≤ N − 1

𝑁 = 4

𝑘 = 0

𝑋 0 = ෍

𝑛=0

3

𝑥 𝑛 𝑒−
𝑗2𝜋0𝑛

4

= 𝑥 0 + 𝑥 1 + 𝑥 2 + 𝑥 3

= 1 + 1 + 0 + 0 = 2

𝑋 1 = ෍

𝑛=0

3

𝑥 𝑛 𝑒−
𝑗𝜋𝑛
2

= 𝑥 0 + 𝑥 1 𝑒−
𝑗𝜋
2 + 𝑥 2 𝑒−𝑗𝜋 + 𝑥 3 𝑒−

𝑗3𝜋
2

= 1 + 1 cos
𝜋

2
− 𝑗 sin

𝜋

2
+ 0 + 0 = 1 − 𝑗

𝑘 = 1

𝑋 2 = ෍

𝑛=0

3

𝑥 𝑛 𝑒−
𝑗𝜋2𝑛
2

= 𝑥 0 + 𝑥 1 𝑒−𝑗𝜋 + 𝑥 2 𝑒−𝑗2𝜋 + 𝑥 3 𝑒−𝑗3𝜋

= 1 + 1 cos 𝜋 − 𝑗 sin 𝜋 + 0 + 0 = 1 − 1 = 0

𝑘 = 2

𝑋 3 = ෍

𝑛=0

3

𝑥 𝑛 𝑒−
𝑗𝜋3𝑛
2

= 1 + 1 cos
3𝜋

2
− 𝑗 sin

3𝜋

2
+ 0 + 0 = 1 + 𝑗

𝑘 = 3

= 𝑥 0 + 𝑥 1 𝑒−
𝑗3𝜋
2 + 𝑥 2 𝑒−𝑗3𝜋 + 𝑥 3 𝑒−

𝑗9𝜋
2

𝑋 𝑘 = 2, 1 − 𝑗, 0,1 + 𝑗
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DFT as linear transformation (Matrix method)

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒𝑊𝑁
𝑛𝑘

, 0 ≤ k ≤ N − 1

𝑊𝑁 = 𝑒−
𝑗2𝜋
𝑁

Lets put n = 0,1,2, … N-1

𝑋 𝑘 = 𝑥 0 . 1 + 𝑥 1 .𝑊𝑁
1𝑘 + 𝑥 2 .𝑊𝑁

2𝑘 +⋯+ 𝑥 𝑁 − 1 𝑊𝑁
(𝑁−1)𝑘

𝑘 = 0

𝑋 0 = 𝑥 0 + 𝑥 1 + 𝑥 2 +⋯+ 𝑥 𝑁 − 1

𝑘 = 1

𝑋 1 = 𝑥 0 + 𝑥 1 .𝑊𝑁
1 + 𝑥 2 .𝑊𝑁

2 +⋯+ 𝑥 𝑁 − 1 𝑊𝑁
(𝑁−1)

𝑘 = 𝑁 − 1

𝑋 𝑁 − 1 = 𝑥 0 + 𝑥 1 .𝑊𝑁
(𝑁−1)

+ 𝑥 2 .𝑊𝑁
2(𝑁−1)

+⋯+ 𝑥 𝑁 − 1 𝑊𝑁
(𝑁−1)(𝑁−1)

⋮

We can also represent the equation in matrix format

𝑋(0)
𝑋(1)
𝑋(2)
𝑋(3)
⋮

𝑋(𝑁 − 1)

=

1 1 1 1 … 1

1
1
1
⋮

𝑊𝑁
1

𝑊𝑁
2

𝑊𝑁
3

⋮

𝑊𝑁
2

𝑊𝑁
4

𝑊𝑁
6

⋮

𝑊𝑁
3

𝑊𝑁
6

𝑊𝑁
9

⋮

…
…
…
…

𝑊𝑁
𝑁−1

𝑊𝑁
2(𝑁−1)

𝑊𝑁
3(𝑁−1)

⋮

1 𝑊𝑁
𝑁−1

𝑊𝑁
2(𝑁−1)

𝑊𝑁
3(𝑁−1)

… 𝑊𝑁
𝑁−1 𝑁−1

𝑥(0)
𝑥(1)
𝑥(2)
𝑥(3)
⋮

𝑥(𝑁 − 1)

𝑋𝑁 = 𝑊𝑁𝑥𝑁

𝑥𝑁 = 𝑊𝑁
−1𝑋𝑁

𝑊𝑁
−1 =

1 1 … 1
1
⋮

𝑊𝑁
−1

⋮
⋱ 𝑊𝑁

−(𝑁−1)

1 𝑊𝑁
− 𝑁−1

… 𝑊𝑁
−(𝑁−1)(𝑁−1)

𝑥(𝑛) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑤𝑁
−𝑛𝑘 , 0 ≤ n ≤ N − 1

IDFT

DFT

𝑥(𝑛) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑤𝑁
𝑛𝑘 ∗

Symbolically we can
write as

𝑥(𝑛) =
1

𝑁
𝑋𝑁𝑊𝑁

∗

𝑊𝑁
−1 =

1

𝑁
𝑊𝑁

∗

Comparing we get
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Twiddle factor matrix 

𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁

Lies on the unit circle in the complex plane from 0 to 2π angle and it gets
repeated for every cycle

𝑊2 =
𝑊2

0 𝑊2
0

𝑊2
0 𝑊2

1 =
1 1
1 −1

𝑊0

𝑊1

𝑊2

𝑊3

1−1

−𝑗

𝑗

𝑊4 =

𝑊4
0 𝑊4

0 𝑊4
0 𝑊4

0

𝑊4
0 𝑊4

1 𝑊4
2 𝑊4

3

𝑊4
0 𝑊4

2 𝑊4
4 𝑊4

6

𝑊4
0 𝑊4

3 𝑊4
6 𝑊4

9

=

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

Imaginary
axis

Real axis

𝑒𝑗𝜃 = cos 𝜃 + 𝑗𝑠𝑖𝑛 𝜃

Phase change ( 00 - 3600) -
anticlockwise

Since e-jθ – clockwise

, 𝑊4,𝑊8

, 𝑊5,𝑊9

,𝑊6, 𝑊10

,𝑊7, 𝑊11

𝑊1
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Relationship of the DFT to Fourier Transform 

𝑋 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑗𝜔𝑛

Fourier-Transform DFT

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑁

Comparing the above equations we get to find that DFT of x(n)
is a sampled version of the FT of the sequence

Relationship between DFT & Fourie Transform

𝑋 𝑘 = ቚ𝑋(𝑒𝑗𝜔)
𝜔=

2𝜋𝑘
𝑁

, 𝑘 = 0,1,2, …𝑁 − 1
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Relationship of the DFT to Z-Transform 

𝑋 𝑍 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑧−𝑛

Z-Transform IDFT

𝑥(𝑛) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒
𝑗2𝜋𝑘𝑛
𝑁

𝑋 𝑍 = ෍

𝑛=0

𝑁−1
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒
𝑗2𝜋𝑘𝑛
𝑁 𝑧−𝑛

Substitute the value of x(n)

=
1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑘) ෍

𝑛=0

𝑁−1

𝑒
𝑗2𝜋𝑘𝑛
𝑁 𝑧−𝑛

=
1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑘) ෍

𝑛=0

𝑁−1

𝑒
𝑗2𝜋𝑘
𝑁 𝑧−1

𝑛

෍

𝑘=0

𝑁−1

𝑎𝑛 =
1 − aN

1 − a

𝑋(𝑧) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑘)
1 − 𝑒

𝑗2𝜋𝑘
𝑁 𝑧−1

𝑁

1 − 𝑒
𝑗2𝜋𝑘
𝑁 𝑧−1

=
1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑘)
1 − 𝑒𝑗2𝜋𝑘𝑧−𝑁

1 − 𝑒
𝑗2𝜋𝑘
𝑁 𝑧−1

In the above condition 𝑒𝑗2𝜋𝑘 = 1 for all the values of k

=
1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑘)
1 − 𝑧−𝑁

1 − 𝑒
𝑗2𝜋𝑘
𝑁 𝑧−1

𝑋 𝑧 =
1 − 𝑧−𝑁

𝑁
෍

𝑘=0

𝑁−1
𝑋(𝑘)

1 − 𝑒
𝑗2𝜋𝑘
𝑁 𝑧−1

Relationship between DFT & Z- Transform
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Properties of Discrete Fourier Transform

Periodicity

Linearity

If X(k) is N-point DFT of a finite duration sequences x(n) then

𝑥 𝑛 + 𝑁 = 𝑥 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

X 𝑘 + 𝑁 = 𝑋 𝑘 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘

If two finite sequences x1(n) and x2(n) are linearly combined as

𝑥3 𝑛 = 𝑎𝑥1 𝑛 + 𝑏𝑥2(𝑛)

Then DFT of the sequence

𝑋3 𝑘 = 𝑎𝑋1 𝑘 + 𝑏𝑋2(𝑘)

𝑎𝑥1 𝑛 + 𝑏𝑥2(𝑛)
𝐷𝐹𝑇

𝑎𝑋1 𝑘 + 𝑏𝑋2(𝑘)

Circular time shift

If X(k) is N-point DFT of a finite duration sequences x(n) then

𝐷𝐹𝑇 𝑥 𝑛 − 𝑚
𝑁

= 𝑋 𝑘 𝑒−
𝑗2𝜋𝑘𝑚

𝑁

Proof

𝑥(𝑛) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒
𝑗2𝜋𝑘𝑛
𝑁 , 0 ≤ n ≤ N − 1

IDFT

Put n=n-m

𝑥(𝑛 −𝑚) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒
𝑗2𝜋𝑘(𝑛−𝑚)

𝑁

=
1

𝑁
෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒
𝑗2𝜋𝑘𝑛
𝑁 𝑒

−𝑗2𝜋𝑘𝑚
𝑁

𝑥(𝑛 − 𝑚) = 𝑥(𝑛)𝑒
−𝑗2𝜋𝑘𝑚

𝑁

Take DFT on both sides

𝐷𝐹𝑇{𝑥(𝑛 −𝑚)} = 𝑋(𝑘)𝑒
−𝑗2𝜋𝑘𝑚

𝑁
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Q) Consider a finite length sequences x(n) shown in figure. The five point DF of x(n) is denoted by
X(k). Plot the sequences whose DFT is

𝑌 𝑘 = 𝑒
−4𝜋𝑘
5 𝑋(𝑘)

1

2 2

1

0 1-1 2 3

Solution

𝐷𝐹𝑇 𝑥 𝑛 − 𝑚
𝑁

= 𝑋 𝑘 𝑒−
𝑗2𝜋𝑘𝑚

𝑁

𝐷𝐹𝑇 𝑥 𝑛 − 2
5
= 𝑋 𝑘 𝑒−

𝑗2𝜋𝑘2
5 , 𝑛 = 0,1,… , 4

𝑦 0 = 𝑥 0 − 2
5For n=0➔

𝑦 1 = 𝑥 1 − 2
5
= 𝑥 5 + 1 − 2 = 𝑥 4 = 0For n=1➔

𝑦 2 = 𝑥 2 − 2
5For n=2➔

𝑦 3 = 𝑥 3 − 2
5
= 𝑥 5 + 3 − 2 = 𝑥 6 = 𝑥 6 − 5 = 𝑥 1 = 2For n=3➔

Exceeding the limit 0 ≤ 𝑛 ≤ 4

𝑦 4 = 𝑥 4 − 2
5
= 𝑥 5 + 4 − 2 = 𝑥 7 = 𝑥 7 − 5 = 𝑥 2 = 2For n=4➔

𝑦 𝑛 = 1,0,1,2,2

1

2

0 1-1 2 3

1

2

4

𝑥(𝑛)

𝑦(𝑛)

= 𝑥 5 + 0 − 2 = 𝑥 3 = 1

= 𝑥 5 + 2 − 2 = 𝑥 5 = 𝑥 5 − 5 = 𝑥 0 = 1
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Properties of Discrete Fourier Transform

Time reversal of the sequence

The time reversal of N-point sequence x(n) is attained by
wrapping the sequence x(n) around the circle in clockwise direction.

𝑥 −𝑛
𝑁
= 𝐷𝐹𝑇 𝑥 𝑁 − 𝑛 = 𝑋 𝑁 − 𝑘

𝐷𝐹𝑇 𝑥 𝑛 𝑒
𝑗2𝜋𝑙𝑛
𝑁 = 𝑋 𝑘 − 𝑙

𝑁

Circular frequency shift

If X(k) is N-point DFT of a finite duration sequences x(n) then

Proof

DFT

Put k=k-l

= ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑛𝑒−
𝑗2𝜋𝑘𝑛
𝑁 𝑒

𝑗2𝜋𝑙𝑛
𝑁

𝑥(𝑘 − 𝑙) = 𝑋 𝑘 𝑒
𝑗2𝜋𝑙𝑛
𝑁

Take DFT on both sides

𝑋 𝑘 − 𝑙
𝑁
= 𝐷𝐹𝑇 𝑥(𝑛)𝑒

𝑗2𝜋𝑙𝑛
𝑁

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑁 , 0 ≤ k ≤ N − 1

𝑋 𝑘 − 𝑙 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋(𝑘−𝑙)𝑛

𝑁
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Properties of Discrete Fourier Transform

Complex conjugate property

𝐷𝐹𝑇 𝑥∗ 𝑛 = 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ −𝑘
𝑁

If X(k) is N-point DFT of a finite duration sequences x(n) then

Proof

𝐷𝐹𝑇 𝑥 𝑛 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑁

𝐷𝐹𝑇 𝑥∗ 𝑛 = ෍

𝑛=0

𝑁−1

𝑥∗ 𝑛 𝑒−
𝑗2𝜋𝑘𝑛
𝑁

𝐷𝐹𝑇 𝑥 𝑛 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒
𝑗2𝜋𝑘𝑛
𝑁

∗

𝑒−
𝑗2𝜋𝑛𝑁
𝑁 = 𝑒−𝑗2𝜋𝑛 = 1

= ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒
𝑗2𝜋𝑘𝑛
𝑁 𝑒−

𝑗2𝜋𝑛𝑁
𝑁

∗

= ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−
𝑗2𝜋𝑛 𝑁−𝑘

𝑁

∗

𝐷𝐹𝑇 𝑥 𝑛 = 𝑋 𝑁 − 𝑘 ∗
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Q) Let X(k) be a 14 point DFT of a length 14 real sequence x(n). The first 8 samples of X(k) are given by,

X(0) = 12,

X(1) = -1+3j ,

X(2) = 3+4j,

X(3) = 1-5j,

X(4) = -2+2j,

X(5) = 6+3j,

X(6) = -2-3j,

X(7) = 10. Determine the remining samples

Solution

Given N=14

𝐷𝐹𝑇 𝑥 𝑛 = 𝑋 𝑁 − 𝑘 ∗

𝑋 8For n=8➔

𝑋 9 = 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ 14 − 9 = 𝑋∗ 5 = 6 − 3𝑗For n=9➔

𝑋 10 = 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ 14 − 10 = 𝑋∗ 4 = −2 − 2𝑗For n=10➔

𝑋 11 = 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ 14 − 11 = 𝑋∗ 3 = 1 + 5𝑗For n=11➔

𝑋 12 = 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ 14 − 12 = 𝑋∗ 2 = 3 − 4𝑗For n=12➔

𝑋 13 = 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ 14 − 13 = 𝑋∗ 1 = −1 − 3𝑗For n=13➔

= 𝑋∗ 𝑁 − 𝑘 = 𝑋∗ 14 − 8 = 𝑋∗ 6 = −2 + 3𝑗
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Linear Convolution

Consider a discrete sequence x(n) of length L and impulse sequence h(n) of length M,
the equation for linear convolution is

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘

Where length of y(n) is L+M-1

Let’s discuss it with an example

Q) Find the convolution of x(n) = {1,2,3,1}, h(n)={1,1,1,}

Solution

L = 4, M = 3

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 Of length→ 4+3-1 = 6

𝑦 0 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ −𝑘For n=0➔

1

2
3

1

x(k)

0 1-1 2 3-2-3

1 1 1

0 1-1 2 3-2-3

h(k)

0 1-1 2 3-2-3

1 1 1h(-k)

= 1.0 + 1.0 + 1.1 + 0.2 + 0.3 + 0.1 = 1
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1

2
3

1

x(k)

0 1-1 2 323
1 1 1

0 1-1 2 323

h(k)

0 1-1 2 323

1 1 1h(-k)

𝑦 1 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 1 − 𝑘For n=1➔

= 1.0 + 1.1 + 1.2 + 0.3 + 0.1 = 3

= ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ −𝑘 + 1

0 1-1 2 323

1 1 1h(-k+1)

𝑦 2 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 2 − 𝑘For n=2➔

= 1.1 + 1.2 + 1.3 + 0.1 = 6

= ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ −𝑘 + 2

0 1-1 2 323

h(-k+2)

𝑦 3 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 3 − 𝑘For n=3➔

= 0.1 + 1.2 + 1.3 + 1.1 = 6

= ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ −𝑘 + 3

0 1-1 2 323

h(-k+3)

𝑦 4 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 4 − 𝑘For n=4➔

= 0.1 + 0.2 + 1.3 + 1.1 = 4

= ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ −𝑘 + 4

0 1-1 2 323

h(-k+4)

0 1-1 2 323

h(-k+5)

𝑦 5 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 5 − 𝑘For n=5➔

= 0.1 + 0.2 + 0.3 + 1.1 = 1

= ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ −𝑘 + 5

𝑦 𝑛 = 1,3,6,6,4,1

1 1 1

1 1 1

1 1 1

1 1 1
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Q) Find the convolution of x(n) = {1,2,3,1}, h(n)={1,1,1,}

Solution

1

2

3

1

1 1 1

1 1 1

2 2 2

3 3 3

1 1 1

+

+

+

+

+
+

𝑦 𝑛 = 1,3,6,6,4,1
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Circular Convolution

Consider two discrete sequence x1(n) & x2(n) of length N with DFTs X1(k), X2(k)

𝑥3 𝑛 = ෍

𝑚=0

𝑁−1

𝑥1 𝑚 𝑥2 𝑛 − 𝑚
𝑁

Also

Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,}

Solution

L = 4, M = 3

𝑥3 𝑛 = 𝑥1 𝑛 ⊙ 𝑥2 𝑛

Let’s discuss it with an example

𝐷𝐹𝑇 𝑥1 𝑛 ⊙ 𝑥2 𝑛 = 𝑋1 𝑘 . 𝑋2 𝑘

Matrix method

Since lengths are not same we do zero-padding

ℎ 𝑛 = 1,−1,1,0

1

2

3

44

1

2

3

3

4

1

2

2

3

4

1

1

-1

1

0

=

(1.1)+(4.-1)+(3.1)+(2.0) = 0

(2.1)+(1.-1)+(4.1)+(3.0) = 5

(3.1)+(2.-1)+(1.1)+(4.0) = 2

(4.1)+(3.-1)+(2.1)+(2.0) = 3

𝑦 𝑛 = 0,5,2,3

www.iammanuprasad.com



Circular Convolution

Concentric Circle method / Stockholm's Method

Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,}

Let’s discuss it with an example

Solution

L = 4, M = 3

Since lengths are not same we do zero-padding

ℎ 𝑛 = 1,−1,1,0

1

2

3

4

𝑦 0 = 1.1 + 2.0 + 3.1 + (4.−1)For n=0➔ = 0

𝑦 1 = 1.−1 + 2.1 + 3.0 + (4.1)For n=1➔ = 5

1

−1

1

0

𝑦 2 = 1.1 + 2.−1 + 3.1 + (4.0)For n=2➔ = 2

𝑦 3 = 1.0 + 2.1 + 3.−1 + (4.1)For n=3➔ = 3

𝑦 𝑛 = 0,5,2,3
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Linear convolution using circular convolution

Let there are two sequence x(n) with L and h(n) with length M. in linear convolution the length of output in L+M-1. In circular
convolution the length of the both input is L=M

Let’s discuss with an example

𝑥 𝑛 = 1,2,3,1,0,0

Q) Find the convolution of the sequences x(n) = {1,2,3,1}, h(n)={1,1,1,}

First we have to make the length of the x(n) and h(n) by adding zeros

(M-1 zeros)

ℎ 𝑛 = 1,1,1,0,0,0 (L-1 zeros)

1

2

3

1

0

00

1

2

3

1

0

0

0

1

2

3

1

1

0

0

1

2

3

1

1

1

0

0

0

=

(1.1)+(0.1)+(0.1)+(1.0) +(3.0) +(2.0) = 1

(2.1)+(1.1)+(0.1)+(0.0) +(1.0) +(3.0) = 3

(3.1)+(2.1)+(1.1)+(0.0) +(0.0) +(1.0) = 6

(1.1)+(3.1)+(2.1)+(1.0) +(0.0) +(0.0) = 6

𝑦 𝑛 = 1,3,6,6,4,1

3

1

0

0

1

2

2

3

1

0

0

1

(0.1)+(1.1)+(3.1)+(2.0) +(1.0) +(0.0) = 4

(0.1)+(0.1)+(1.1)+(3.0) +(2.0) +(1.0) = 1
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Filtering of long duration sequences

1) Overlap – save method

Let’s consider an input sequence x(n) of length Ls and response h(n)of length M, the steps to
follow overlap – save method is

Step 1 : input x(n) is divided into length L (L≥M)

Step 2 : Calculate the length N=L+M-1

Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from
previous segment, making each of length N

Step 4 : Make impulse response to length N by adding zeros

Step 5 ; Find the circular convolution of each new segments with new h(n)

Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first
M-1 points
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1) Overlap – save method

Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1}

Solution

Given , Ls = 10 & M=3

Step 1 : input x(n) is divided into length L

𝑥1 𝑛 = 3,−1,0

𝑥2 𝑛 = 1,3,2

𝑥3 𝑛 = 0,1,2

𝑥4 𝑛 = 1,0,0

Step 2 : Calculate the length N=L+M-1

𝑁 = 𝐿 +𝑀 − 1 = 3 + 3 − 1 = 5

Lets guess the value of L =3 (𝐿 ≥ 𝑀)
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Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from

previous segment, making each of length N

𝑥1 𝑛 = 0,0,3, −1,0

𝑥2 𝑛 = −1,0, 1,3,2

1) Overlap – save method

𝑥3 𝑛 = 3,2,0,1,2

𝑥4 𝑛 = 1,2,1,0,0

M-1 = 3-1 = 2

Step 4 : Make impulse response to length N by adding zeros

ℎ 𝑛 = 1,1,1,0,0

𝑥1 𝑛 = 3, −1,0

𝑥2 𝑛 = 1,3,2

𝑥3 𝑛 = 0,1,2

𝑥4 𝑛 = 1,0,0
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Step 5 ; Find the circular convolution of each new segments with new h(n)

1) Overlap – save method

0 0 −1 3 0
0 0 0 −1 3
3
−1
0

0
3
−1

0
0
3

0
0
0

−1
0
0

𝑦1 𝑛 = 𝑥1 𝑛 ⊙ ℎ(𝑛) = 0,0,3, −1,0 ⊙ 1,1,1,0,0 1
1
1
0
0

= −1,0,3,2,2

𝑦2(𝑛) = 𝑥2 𝑛 ⊙ ℎ(𝑛) = −1,0, 1,3,2 ⊙ 1,1,1,0,0 = 4, 1, 0, 4, 6

𝑦3(𝑛) = 𝑥3 𝑛 ⊙ ℎ(𝑛) = 3,2,0,1,2 ⊙ 1,1,1,0,0 = 6, 7, 5, 3, 3

𝑦4(𝑛) = 𝑥4 𝑛 ⊙ ℎ(𝑛) = 1,2,1,0,0 ⊙ 1,1,1,0,0 = 1, 3, 4, 3, 1

Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1

points

𝑦 𝑛 = {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1}

Check whether length of y(n) is Ls+M-1 , if yes

discard the higher sequences

M-1 = 3-1 = 2

Ls+M-1 = 10+3-1 = 12
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1) Overlap – save method

Q) Find the convolution of the sequences x(n) = {1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-save method

Solution

Given , Ls = 12 & M=2

Step 1 : input x(n) is divided into length L

𝑥1 𝑛 = 1, 2, −1

𝑥2 𝑛 = 2,3,−2

𝑥3 𝑛 = −3,−1,1

𝑥4 𝑛 = 1,2,−1

Step 2 : Calculate the length N=L+M-1

𝑁 = 𝐿 +𝑀 − 1 = 3 + 2 − 1 = 4

Lets guess the value of L =3 (𝐿 ≥ 𝑀)
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Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from

previous segment, making each of length N

𝑥1 𝑛 = 0,1,2, −1

𝑥2 𝑛 = −1,2,3, −2

1) Overlap – save method

𝑥3 𝑛 = −2,−3, −1,1

𝑥4 𝑛 = 1, 1, 2, −1

M-1 = 2-1 = 1

Step 4 : Make impulse response to length N by adding zeros

ℎ 𝑛 = 1, 2 , 0 , 0

𝑥1 𝑛 = 1, 2, −1

𝑥2 𝑛 = 2,3, −2

𝑥3 𝑛 = −3,−1,1

𝑥4 𝑛 = 1,2, −1

𝑥5 𝑛 = −1, 0,0,0
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Step 5 ; Find the circular convolution of each new segments with new h(n)

1) Overlap – save method

0 −1 2 1
1 0 −1 2
2 1 0 −1
−1 2 1 0

𝑦1 𝑛 = 𝑥1 𝑛 ⊙ ℎ(𝑛) = 0,1,2, −1 ⊙ 1,2, 0,0 1
2
0
0

= −2, 1, 4, 3

𝑦2(𝑛) = 𝑥2 𝑛 ⊙ ℎ(𝑛) = −1,2,3, −2 ⊙ 1,2,0,0 = −5, 0, 7, 4

𝑦3(𝑛) = 𝑥3 𝑛 ⊙ ℎ(𝑛) = −2,−3,−1,1 ⊙ 1,2, 0,0 = 0,−7, −7, −1

𝑦4(𝑛) = 𝑥4 𝑛 ⊙ ℎ(𝑛) = 1, 1, 2, −1 ⊙ 1,2,0,0 = −1, 3, 4, 3

Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1

points

𝑦 𝑛 = {1,4,3,0,7,4, −7, −7,−1,3,4,3, −2,0,0}
Check whether length of y(n) is Ls+M-1 , if yes

discard the higher sequences

𝑦5(𝑛) = 𝑥5 𝑛 ⊙ ℎ(𝑛) = −1, 0,0,0 ⊙ 1,2,0,0 = −1,−2, 0, 0

𝑦 𝑛 = {1,4,3,0,7,4, −7,−7,−1,3,4,3, −2}
Ls+M-1 = 12+2-1 = 13
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Filtering of long duration sequences

2) Overlap – add method

Let’s consider an input sequence x(n) of length L1 and response h(n) of length M, the steps to
follow overlap – save method is

Step 1 : input x(n) is divided into length L (L≥M)

Step 2 : Calculate the length N=L+M-1

Step 3 : Add M-1 zeros on each segment (length = L) of x(n)

Step 4 : Make impulse response to length N by adding zeros

Step 5 ; Find the circular convolution of each new segments with new h(n)

Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1
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1) Overlap – add method

Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1}

Solution

Given , L1 = 10 & M=3

Step 1: input x(n) is divided into length L (L≥M)

𝑥1 𝑛 = 3,−1,0

𝑥2 𝑛 = 1,3,2

𝑥3 𝑛 = 0,1,2

𝑥4 𝑛 = 1,0,0

Step 2 : Calculate the length N=L+M-1

𝑁 = 𝐿 +𝑀 − 1 = 3 + 3 − 1 = 5

Lets guess the value of L =3 (𝐿 ≤ 𝑀)
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Step 3 : Add M-1 zeros on each segment (length = L) of x(n)

𝑥1 𝑛 = 3,−1, 0, 0, 0

𝑥2 𝑛 = 1, 3, 2, 0, 0

1) Overlap – add method

𝑥3 𝑛 = 0, 1, 2, 0, 0

𝑥4 𝑛 = 1, 0, 0, 0, 0

M-1 = 3-1 = 2

Step 4 : Make impulse response to length N by adding zeros

ℎ 𝑛 = 1,1,1,0,0

𝑥1 𝑛 = 3, −1,0

𝑥2 𝑛 = 1,3,2

𝑥3 𝑛 = 0,1,2

𝑥4 𝑛 = 1,0,0
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Step 5 ; Find the circular convolution of each new segments with new h(n)

1) Overlap – add method

3 0 0 0 −1
−1 3 0 0 0
0
0
0

−1
0
0

3
−1
0

0
3
−1

0
0
3

𝑦1 𝑛 = 𝑥1 𝑛 ⊙ ℎ(𝑛) = 3,−1, 0, 0, 0, ⊙ 1,1,1,0,0 1
1
1
0
0

= 3,2,2, −1,0

𝑦2(𝑛) = 𝑥2 𝑛 ⊙ ℎ(𝑛) = 1, 3, 2, 0, 0 ⊙ 1,1,1,0,0 = 1,4,6,5,2

𝑦3(𝑛) = 𝑥3 𝑛 ⊙ ℎ(𝑛) = 0, 1, 2, 0, 0 ⊙ 1,1,1,0,0 = 0,1,3,3,2

𝑦4(𝑛) = 𝑥4 𝑛 ⊙ ℎ(𝑛) = 1, 0, 0, 0, 0 ⊙ 1,1,1,0,0 = 1,1,1,0,0

Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1

𝑦 𝑛 = {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1}

Check whether length of y(n) is L1+M-1 , if yes

discard the higher sequences

3, 2, 2, −1, 0

1, 4, 6, 5, 2

0,1, 3, 3, 2

1, 1, 1, 0, 0

{3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1, 0,0}

L1+M-1 = 10+3-1 = 12
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1) Overlap – add method

Q) Find the convolution of the sequences x(n) = {1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-add method

Solution

Given , Ls = 12 & M=2

Step 1 : input x(n) is divided into length L

𝑥1 𝑛 = 1, 2, −1

𝑥2 𝑛 = 2,3,−2

𝑥3 𝑛 = −3,−1,1

𝑥4 𝑛 = 1,2,−1

Step 2 : Calculate the length N=L+M-1

𝑁 = 𝐿 +𝑀 − 1 = 3 + 2 − 1 = 4

Lets guess the value of L =3 (𝐿 ≥ 𝑀)
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Step 3 : Add M-1 zeros on each segment (length = L) of x(n)

𝑥1 𝑛 = 1, 2, −1, 0

𝑥2 𝑛 = 2,3, −2,0

1) Overlap – save method

𝑥3 𝑛 = −3,−1,1,0

𝑥4 𝑛 = 1, 2, −1,0

M-1 = 2-1 = 1

Step 4 : Make impulse response to length N by adding zeros

ℎ 𝑛 = 1, 2 , 0 , 0

𝑥1 𝑛 = 1, 2, −1

𝑥2 𝑛 = 2,3, −2

𝑥3 𝑛 = −3,−1,1

𝑥4 𝑛 = 1,2, −1
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Step 5 ; Find the circular convolution of each new segments with new h(n)

1) Overlap – save method

1 0 −1 2
2 1 0 −1
−1 2 1 0
0 −1 2 1

𝑦1 𝑛 = 𝑥1 𝑛 ⊙ ℎ(𝑛) = 1,2, −1,0 ⊙ 1,2, 0,0 1
2
0
0

= 1, 4, 3,2

𝑦2(𝑛) = 𝑥2 𝑛 ⊙ ℎ(𝑛) = 2,3, −2,0 ⊙ 1,2,0,0 = 2,7, 4, −4

𝑦3(𝑛) = 𝑥3 𝑛 ⊙ ℎ(𝑛) = −3,−1,1,0 ⊙ 1,2, 0,0 = −3,−7,−1,2

𝑦4(𝑛) = 𝑥4 𝑛 ⊙ ℎ(𝑛) = 1, 2, −1,0 ⊙ 1,2,0,0 = 1, 4 , 3, −2

Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1

Check whether length of y(n) is Ls+M-1 , if yes

discard the higher sequences

𝑦 𝑛 = {1,4,3,0,7,4, −7, −7,−1,3,4,3, −2}

1, 4, 3, 2

−2, 7, 4, −4

−3,−7,−1, 2

1, 4, 3, −2

{1, 4, 3, 0, 7, 4, −7,−7,−1, 3, 4, 3, −2, }

Ls+M-1 = 12+2-1 = 13
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Fast Fourier Transform (FFT)

Lets calculate the DFT of a sequence with N=4 and k=1

𝑋 1 = ෍

𝑛=0

3

𝑥 𝑛 𝑊4
𝑛

= 𝑥 0 𝑊4
0 + 𝑥 1 𝑊4

1 + 𝑥 2 𝑊4
2 + 𝑥 3 𝑊4

3

For a single value of k we have

4 → Multiplication

3 →Addition

For example N=1024

DFT method

Complex multiplication = 𝑁2

= 10242

= 1048576

Complex Addition = 𝑁(𝑁 − 1)

= 1024(1024 − 1)

= 1047552
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Fast Fourier Transform (FFT)

• DFT takes more time and resources

• Not much efficient

• Much complex

• So we come into a new algorithm to make the calculations fast known as fast Fourier Transform (FFT)

• It is a highly efficient procedure for computing the DFT of a sequence for computing the DFT of a finite
sequence and require less number of computation than that of direct evaluation of DFT

• FFT is based on decomposition and breaking the transform into smaller transform and combine them to get
total transform

• FFT make use of the symmetry and periodicity property of twiddle factor

FFT method

Complex multiplication =
𝑁

2
log2𝑁

= 5120

Complex Addition= 𝑁 log2𝑁

= 1024 log2 1024

= 1024

For example N=1024

=
1024

2
log2 1024
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Fast Fourier Transform (FFT)

Let us recollect the twiddle factor

𝑊𝑁
𝑘 = 𝑒

−
𝑗2𝜋

𝑁
𝑘

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘 , 0 ≤ k ≤ N − 1

DFT

𝑊𝑁 = 𝑒−
𝑗2𝜋

𝑁

𝑊8
0 = 𝑒

−
𝑗2𝜋

8
0
= 1

For N=8 & k=0

𝑊8
1 = 𝑒

−
𝑗2𝜋

8
.1

For N=8 & k=1

= 𝑒
−𝑗𝜋

4

𝑒−𝑗𝜃 = cos 𝜃 − 𝑗𝑠𝑖𝑛 𝜃

= cos
𝜋

4
− 𝑗 sin

𝜋

4

𝑊8
1 =

1

√2
− 𝑗

1

√2

𝑊8
2 = 𝑒

−
𝑗2𝜋

8
.2

For N=8 & k=2

= 𝑒
−𝑗𝜋

2

= cos
𝜋

2
− 𝑗 sin

𝜋

2

𝑊8
2 = −𝑗

𝑊8
3 = 𝑒

−
𝑗2𝜋

8
.3

For N=8 & k=3

= 𝑒
−𝑗3𝜋

4

= cos
3𝜋

4
− 𝑗 sin

3𝜋

4

𝑊8
3 =

−1

√2
− 𝑗

1

√2

= 0.7071 − 𝑗0.7071 𝑊8
3 = −0.7071 − 𝑗0.7071𝑊4

0 = 𝑒
−
𝑗2𝜋

4
0
= 1

For N=4 & k=0

𝑊4
1 = 𝑒

−
𝑗2𝜋

4
.1

For N=4 & k=1

= 𝑒−
𝑗𝜋

2 = cos
𝜋

2
− 𝑗 sin

𝜋

2

𝑊4
1 = −𝑗

www.iammanuprasad.com



Fast Fourier Transform (FFT)

Decimation in Time (DIT)

• Also known as Radix DIT FFT algorithm

• The number of output points N can be expressed as a power
of 2 (N=2M)

Let x(n) is an N-point sequence and we are
dividing it into two (even xe(n) & odd xo(n)) parts

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘

We know DFT

= ෍

𝑛=0

𝑁
2
−1

𝑥 2𝑛 𝑊𝑁
2𝑛𝑘 + ෍

𝑛=0

𝑁
2
−1

𝑥 2𝑛 + 1 𝑊𝑁
(2𝑛+1)𝑘

𝑥𝑒 𝑛 = 𝑥(2𝑛) 𝑥𝑜 𝑛 = 𝑥(2𝑛 + 1)

= ෍

𝑛=0

𝑁
2
−1

𝑥 2𝑛 𝑊𝑁
2𝑛𝑘 +𝑊𝑁

𝑘 ෍

𝑛=0

𝑁
2
−1

𝑥 2𝑛 + 1 𝑊𝑁
2𝑛𝑘

𝑊𝑁
2 = 𝑒

−
𝑗2𝜋

𝑁
2
= 𝑒

−
𝑗2𝜋
𝑁
2 = 𝑊𝑁

2

𝑋(𝑘) = ෍

𝑛=0

𝑁
2
−1

𝑥𝑒(𝑛)𝑊𝑁
2

𝑛𝑘 +𝑊𝑁
𝑘 ෍

𝑛=0

𝑁
2
−1

𝑥𝑜(𝑛)𝑊𝑁
2

𝑛𝑘

𝑋 𝑘 = 𝑋𝑒 𝑘 +𝑊𝑁
𝑘𝑋𝑜(𝑘)

𝐹𝑟𝑜𝑚 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ∶ 𝑊𝑁

𝑘+
𝑁
2 = −𝑊𝑁

𝑘

Then

𝑋 𝑘 = 𝑋𝑒 𝑘 −
𝑁

2
−𝑊𝑁

𝑘−
𝑁
2𝑋𝑜 𝑘 −

𝑁

2
For k > N/2

For k < N/2
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𝑋 𝑘 = 𝑋𝑒 𝑘 +𝑊𝑁
𝑘𝑋𝑜(𝑘)

𝑋 𝑘 = 𝑋𝑒 𝑘 −
𝑁

2
−𝑊𝑁

𝑘−
𝑁
2𝑋𝑜 𝑘 −

𝑁

2

Example : For N = 8

𝑋 𝑘 = 𝑥𝑒 𝑘 +𝑊8
𝑘𝑥𝑜 𝑘 , 𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 3

𝑋 𝑘 = 𝑥𝑒 𝑘 − 4 −𝑊8
𝑘−4𝑥𝑜 𝑘 − 4 , 𝑓𝑜𝑟 4 ≤ 𝑘 ≤ 7

𝑥𝑒 0 = 𝑥(0)

𝑥𝑒 1 = 𝑥(2)

𝑥𝑒 2 = 𝑥(4)

𝑥𝑒 3 = 𝑥(6)

𝑥𝑜 0 = 𝑥(1)

𝑥0 1 = 𝑥(3)

𝑥𝑜 2 = 𝑥(5)

𝑥𝑜 3 = 𝑥(7)

even odd

𝑋 0 = 𝑥𝑒 0 +𝑊8
0𝑥𝑜 0

𝑋 1 = 𝑥𝑒 1 +𝑊8
1𝑥𝑜 1

𝑋 2 = 𝑥𝑒 2 +𝑊8
2𝑥𝑜 2

𝑋 3 = 𝑥𝑒 3 +𝑊8
3𝑥𝑜 3

𝑋 4 = 𝑥𝑒 0 −𝑊8
0𝑥𝑜 0

𝑋 5 = 𝑥𝑒 1 −𝑊8
1𝑥𝑜 1

𝑋 6 = 𝑥𝑒 2 −𝑊8
2𝑥𝑜 2

𝑋 7 = 𝑥𝑒 3 −𝑊8
3𝑥𝑜 3

𝑥𝑒(0)

𝑥𝑜(0)

𝑥𝑒 0 +𝑊8
0𝑥0 0 = 𝑋(0)

𝑥𝑒 0 −𝑊8
0𝑥0 0 = 𝑋(4)

𝑊8
0

This operation can be represented by a butterfly diagram

𝑎

𝑏

𝑎 + 𝑏𝑊𝑁
𝑘

𝑎 − 𝑏𝑊𝑁
𝑘

𝑊𝑁
𝑘

Decimation in Time (DIT)
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Decimation in Time (DIT)

Steps to follow

Step 1 : Find the number of input samples (N)

Step 2 : Bir reversal

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

Step 4 : Calculate the number of max butterflies in stage (N/2)

Step 5 : Calculate the twiddle factor

Step 6 : Evaluate the N point DFT using butterfly diagram

Step7 : The DFT output is in normal order

Input Binary Bit-reversed
Revised 

samples

x(0) 000 000 x(0)

x(1) 001 100 x(4)

x(2) 010 010 x(2)

x(3) 011 110 x(6)

x(4) 100 001 x(1)

x(5) 101 101 x(5)

x(6) 110 011 x(3)

x(7) 111 111 x(7)

4-point 

DFT

4-point 

DFT

8-point 

DFT

2-point 

DFT

2-point 

DFT

2-point 

DFT

2-point 

DFT
www.iammanuprasad.com



Decimation in Time (DIT)

Q) Find the DFT of a sequence x(n) = {0, 1, 2, 3} using DIT algorithm

Solution

Step 1 : Find the number of input samples (N)

N=4

Step 2 : Bit reversal

Input Binary
Bit-

reversed

Revised 

samples

x(0) 00 00 x(0)

x(1) 01 10 x(2)

x(2) 10 01 x(1)

x(3) 11 11 x(3)

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

𝑀 = log2𝑁 = log2 4

𝑀 = 2

Step 4 : Calculate the number of max butterflies in stage

𝑁

2
=
4

2
= 2
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Decimation in Time (DIT)

Step 5 : Calculate the twiddle factor

𝑘 =
𝑁𝑡

2𝑀
𝑡 = 0, 1, 2, …2𝑀−1 − 1

Stage =1 (𝑀 = 1)

𝑡 = 0

𝑘 =
𝑁𝑡

2𝑀
=
4.0

21
= 0

𝑊4
0

𝑊4
0 = 𝑒

−
𝑗2𝜋

4
0
= 1

Stage =2 (𝑀 = 2)

𝑡 = 0,1

𝑘 =
4.0

22
= 0

for t=0

𝑘 =
4.1

22
= 1

for t=1

𝑊4
0

𝑊4
1
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Decimation in Time (DIT)

𝑥 0 = 0

𝑥 2 = 2

0 + 2.1 = 2

0 − 2.1 = −2𝑊4
0

𝑥 1 = 1

𝑥 3 = 3

1 + 3.1 = 4

1 − 3.1 = −2𝑊4
0

𝑥 𝑛 = 0, 1, 2, 3

Stage 1

𝑊4
0

𝑊4
1

𝑊4
0 = 1 𝑊4

1 = −𝑗

Stage 2

2 + 4.1 = 6

−2 + −2.−𝑗 = −2 + 2𝑗

2 − 4.1 = −2

−2 − −2.−𝑗 = −2 − 2𝑗

𝑋 0

𝑋 1

𝑋(2)

𝑋 3

𝑋 𝑘 = 6,−2 + 2𝑗,−2 − 2 − 2𝑗

Step 6 : Evaluate the N point DFT using butterfly diagram

Step7 : The DFT output

is in normal order
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Decimation in Time (DIT)

Q) Find the DFT of a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1 } using DIT algorithm

Solution

Step 1 : Find the number of input samples (N)

N=8

Step 2 : Bit reversal

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

𝑀 = log2𝑁 = log2 8

𝑀 = 3

Step 4 : Calculate the number of max butterflies in stage

𝑁

2
=
8

2
= 4
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Decimation in Time (DIT)

Step 5 : Calculate the twiddle factor

𝑘 =
𝑁𝑡

2𝑀
𝑡 = 0, 1, 2, …2𝑀−1 − 1

Stage =1 (𝑀 = 1)

𝑡 = 0

𝑘 =
𝑁𝑡

2𝑀
=
8.0

21
= 0

𝑊8
0

𝑊8
0 = 𝑒

−
𝑗2𝜋

8
0
= 1

Stage =2 (𝑀 = 2)

𝑡 = 0,1

𝑘 =
8.0

22
= 0

for t=0

𝑘 =
8.1

22
= 2

for t=1

𝑊8
0

𝑊8
2

Stage =3 (𝑀 = 3)

𝑡 = 0,1,2,3

𝑘 =
8.0

23
= 0

for t=0

𝑊8
0

𝑘 =
8.1

23
= 1

for t=1

𝑊8
1

𝑘 =
8.2

23
= 2

for t=2

𝑊8
2

𝑊8
2 = −𝑗

𝑊8
2 = −𝑗

𝑊8
1 =

1

√2
− 𝑗

1

√2

𝑊8
0 = 1

𝑘 =
8.3

23
= 3

for t=3

𝑊8
3 𝑊8

2 =
−1

√2
− 𝑗

1

√2
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Decimation in Time (DIT)

𝑥 𝑛 = 1, 2, 3,4, 4, 3, 2, 1 𝑊8
0 = 1 𝑊8

1 =
1

√2
− 𝑗

1

√2
𝑊8

2 = −𝑗 𝑊8
3 =

−1

√2
− 𝑗

1

√2
Stage 1

𝑥 0 = 1

𝑥 4 = 4

𝑥 2 = 3

𝑥 6 = 2

𝑥 1 = 2

𝑥 5 = 3

𝑥 3 = 4

𝑥 7 = 1

𝑊8
0 = 1

𝑊8
0 = 1

𝑊8
0 = 1

𝑊8
0 = 1

1 + 4.1 = 5

1 − 4.1 = −3

3 + 2.1 = 5

3 − 2.1 = 1

5

−1

5

3

Stage 2

𝑊8
0 = 1

𝑊8
2 = −𝑗

5 + 5.1 = 10

−3 + 1.−𝑗 = −3 − 𝑗

5 − 5.1 = 0

−3 − 1.−𝑗 = −3 + 𝑗

10

−1 − 3𝑗

0

−1 + 3𝑗

𝑊8
0 = 1

𝑊8
2 = −𝑗

Stage 3

10 + 10.1 = 20

−3 − 𝑗 + −1 − 3𝑗
1

√2
− 𝑗

1

√2

𝑊8
0 = 1

𝑊8
1 =

1

√2
− 𝑗

1

√2

𝑊8
2 = −𝑗

𝑊8
3 =

−1

√2
− 𝑗

1

√2

0

−0.172 − 𝑗0.414

0

−0.172 − 𝑗0.414

0

−5.828 + 𝑗0.414

−5.82 − 𝑗2.414

𝑋 𝑘 = 20,−5.82 − 𝑗2.414, 0, − 0.172 − 𝑗0.414, 0, −0.172 − 𝑗0.414 , 0, −5.828 + 𝑗0.414

𝑋 0

𝑋 1

𝑋 2

𝑋 3

𝑋 4

𝑋 5

𝑋 6

𝑋 7

Step 6 : Evaluate the N point DFT using butterfly diagram

Step7 : The DFT

output is in normal

order
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Fast Fourier Transform (FFT)

Decimation in Frequency (DIF)

• Based on the decomposition of the DFT computation by
forming smaller and smaller sub sequences

• In DIF the output sequence X(k) is divided into smaller and
smaller sub sequences

Let x(n) is an N-point sequence and we are
dividing it into two parts

𝑋 𝑘 = ෍

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘

We know DFT

= ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 𝑊𝑁
𝑛𝑘 + ෍

𝑛=0

𝑁
2
−1

𝑥2 𝑛 𝑊𝑁

𝑛+
𝑁
2

𝑘

𝑥1 𝑛 = 𝑥(𝑛) 𝑥2 𝑛 = 𝑥 𝑛 +
𝑁

2

= ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 𝑊𝑁
𝑛𝑘 +𝑊𝑁

𝑁𝐾
2 ෍

𝑛=0

𝑁
2
−1

𝑥2 𝑛 𝑊𝑁
𝑛𝑘

𝑛 = 0,1,2,…
𝑁

2
− 1 𝑛 = 0,1,2,…

𝑁

2
− 1

𝑊𝑁

𝑁𝑘
2 = 𝑒

−𝑗2𝜋
𝑁

𝑁𝑘
2 = 𝑒−𝑗𝜋𝑘

When k is even 𝑒−𝑗𝜋𝑘 = 1

𝑋(2𝑘) = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 𝑊𝑁
𝑛𝑘 + 𝑒−𝑗𝜋𝑘 ෍

𝑛=0

𝑁
2
−1

𝑥2 𝑛 𝑊𝑁
𝑛𝑘 = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 + 𝑥2 𝑛 𝑊𝑁
2𝑛𝑘

𝑊𝑁
2𝑛𝑘 = 𝑊𝑁

2

𝑘

𝑋(2𝑘) = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 + 𝑥2 𝑛 𝑊𝑁
2

𝑛𝑘

When k is odd 𝑒−𝑗𝜋𝑘 = −1

𝑋(2𝑘 + 1) = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 − 𝑥2 𝑛 𝑊𝑁
2𝑘+1 𝑛

𝑋 2𝑘 + 1 = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 − 𝑥2 𝑛 𝑊𝑁
2

𝑛𝑘𝑊𝑁
𝑛

In the above equation in the N/2 –point DFT of N/2 sequences is
obtained by adding the first half and last half of the input sequences

In the above equation in the N/2 –point DFT of N/2 sequences is
obtained by subtracting the second half of the input from the first half and then
multiplying the result with WN
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Example : For N = 8

𝑋 2𝑘 = 𝑥1 𝑘 + 𝑥2 𝑘 , 𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 3

𝑋 2𝑘 + 1 = 𝑥1 𝑘 − 𝑥2 𝑘 𝑊8
𝑘 , 𝑓𝑜𝑟 4 ≤ 𝑘 ≤ 7

𝑥1 0 = 𝑥(0)

𝑥1 1 = 𝑥(1)

𝑥1 2 = 𝑥(2)

𝑥1 3 = 𝑥(3)

𝑥2 0 = 𝑥(4)

𝑥2 1 = 𝑥(5)

𝑥2 2 = 𝑥(6)

𝑥2 3 = 𝑥(7)

x1(n) x2(n)

𝑋 0 = 𝑥1 0 + 𝑥2 0

𝑋 1 = 𝑥1 1 + 𝑥2 1

𝑋 2 = 𝑥1 2 + 𝑥2 2

𝑋 3 = 𝑥1 3 + 𝑥2 3

𝑋 4 = [𝑥1 0 − 𝑥2 0 ]𝑊8
0

𝑋 5 = [𝑥1 1 − 𝑥2 1 ]𝑊8
1

𝑋 6 = [𝑥1 2 − 𝑥2 2 ]𝑊8
2

𝑋 7 = [𝑥1 3 − 𝑥2 3 ]𝑊8
3

𝑥1(𝑛)

𝑥2(𝑛)

𝑥1 𝑛 + 𝑥2 𝑛

[𝑥1 𝑛 − 𝑥2 𝑛 ]𝑊𝑁
𝑛

𝑊𝑁
𝑛

This operation can be represented by a butterfly diagram

𝑎

𝑏

𝑎 + 𝑏

[𝑎 − 𝑏]𝑊𝑁
𝑛

𝑊𝑁
𝑛

Decimation in Frequency (DIF)

𝑋(2𝑘) = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 + 𝑥2 𝑛 𝑊𝑁
2

𝑛𝑘

𝑋 2𝑘 + 1 = ෍

𝑛=0

𝑁
2
−1

𝑥1 𝑛 − 𝑥2 𝑛 𝑊𝑁
2

𝑛𝑘𝑊𝑁
𝑛
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Decimation in Frequency (DIF)

Steps to follow

Step 1 : Find the number of input samples (N)

Step 2 : input sequence in normal order

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

Step 4 : Calculate the number of max butterflies in stage (N/2)

Step 5 : Calculate the twiddle factor

Step 6 : Evaluate the N point DFT using butterfly diagram

Step7 : The DFT output is in bit-reversed order

Input Binary Bit-reversed
Revised 

samples

x(0) 000 000 x(0)

x(1) 001 100 x(4)

x(2) 010 010 x(2)

x(3) 011 110 x(6)

x(4) 100 001 x(1)

x(5) 101 101 x(5)

x(6) 110 011 x(3)

x(7) 111 111 x(7)

4-point 

DFT

4-point 

DFT

8-point 

DFT

2-point 

DFT

2-point 

DFT

2-point 

DFT

2-point 

DFT
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Decimation in Frequency (DIF)

Q) Find the DFT of a sequence x(n) = {0, 1, 2, 3} using DIF algorithm

Solution

Step 1 : Find the number of input samples (N)

N=4

Step 2 : input sequence in normal order

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

𝑀 = log2𝑁 = log2 4

𝑀 = 2

Step 4 : Calculate the number of max butterflies in stage

𝑁

2
=
4

2
= 2
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Decimation in Frequency (DIF)

Step 5 : Calculate the twiddle factor

𝑘 =
𝑁𝑡

2𝑀−𝑚+1
𝑡 = 0, 1, 2, …2𝑀−𝑚 − 1

Stage =1 (𝑀 = 2,𝑚 = 1)

𝑡 = 0

𝑘 =
𝑁𝑡

2𝑀−𝑚+1

=
4.0

21
= 0

𝑊4
0

Stage =2 (𝑀 = 2,𝑚 = 2)

𝑡 = 0,1

=
4.0

22
= 0

for t=0

𝑘 =
4.1

22
= 1

for t=1

𝑊4
0

𝑊4
1

𝑘 =
𝑁𝑡

2𝑀−𝑚+1
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Decimation in Frequency (DIF)

𝑥 0 = 0

𝑥 1 = 1

0 + 2 = 2

1 + 3 = 4

𝑊4
0

𝑥 2 = 2

𝑥 3 = 3

0 − 2 1 = −2

1 − 3 − 𝑗 = 2𝑗

𝑊4
0

𝑥 𝑛 = 0, 1, 2, 3

Stage 1

𝑊4
0

𝑊4
1

𝑊4
0 = 1 𝑊4

1 = −𝑗

Stage 2

2 + 4 = 6

2 − 4 1 = −2

−2 + 2𝑗

−2 − 2𝑗 1 = −2 − 2𝑗

𝑋 0

𝑋 2

𝑋(1)

𝑋 3

𝑋 𝑘 = 6,−2 + 2𝑗,−2,−2 − 2𝑗

Step7 : The DFT output is

in bit-reversed order

Step 6 : Evaluate the N point DFT using butterfly diagram

www.iammanuprasad.com



Decimation in Frequency (DIF)

Q) Find the DFT of a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1 } using DIF algorithm

Solution

Step 1 : Find the number of input samples (N)

N=8

Step 2 : input sequence in normal order

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

𝑀 = log2𝑁 = log2 8

𝑀 = 3

Step 4 : Calculate the number of max butterflies in stage

𝑁

2
=
8

2
= 4
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Decimation in Frequency (DIF)

Step 5 : Calculate the twiddle factor

𝑘 =
𝑁𝑡

2𝑀−𝑚+1 𝑡 = 0, 1, 2, … 2𝑀−𝑚 − 1

Stage =1 (𝑀 = 3,𝑚 = 1)

𝑡 = 0,1,2,3

𝑘 =
8.0

23
= 0

for t=0

𝑊8
0

𝑘 =
8.1

23
= 1

for t=1

𝑊8
1

𝑘 =
8.2

23
= 2

for t=2

𝑊8
2

𝑊8
2 = −𝑗

𝑊8
1 =

1

√2
− 𝑗

1

√2

𝑊8
0 = 1

𝑘 =
8.3

23
= 3

for t=3

𝑊8
3 𝑊8

2 =
−1

√2
− 𝑗

1

√2

Stage =2 (𝑀 = 3,𝑚 = 2)

𝑡 = 0,1

𝑘 =
8.0

22
= 0

for t=0

𝑘 =
8.1

22
= 2

for t=1

𝑊8
0

𝑊8
2

𝑊8
0 = 1

Stage =3 (𝑀 = 3,𝑚 = 3)

𝑡 = 0

𝑘 =
8.0

21
= 0

for t=0

𝑊8
0 𝑊8

0 = 1

𝑊8
2 = −𝑗
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Decimation in Frequency (DIF)

𝑥 𝑛 = 1, 2, 3,4, 4, 3, 2, 1 𝑊8
0 = 1 𝑊8

1 =
1

√2
− 𝑗

1

√2
𝑊8

2 = −𝑗 𝑊8
3 =

−1

√2
− 𝑗

1

√2

Stage 1
𝑥 0 = 1

𝑥 1 = 2

𝑥 2 = 3

𝑥 3 = 4

𝑥 4 = 4

𝑥 5 = 3

𝑥 6 = 2

𝑥 7 = 1

1 + 4 = 5

2 + 3 = 5

3 + 2 = 5

4 + 1 = 5

1 − 4 . 1 = −3

2 − 3
1

√2
− 𝑗

1

2

3 − 2 − 𝑗 = −𝑗

4 − 1
−1

√2
− 𝑗

1

√2

Stage 2

𝑊8
0

𝑊8
2

5 + 5 = 10

5 + 5 = 10

5 − 5 1 = 0

5 − 5 − 𝑗 = 0

−3 − 𝑗

−2.828 − 𝑗1.414

−3 + 𝑗

2.828 − 𝑗1.414

Stage 3
10 + 10 = 20

10 − 10 1 = 0
𝑊8

0

𝑊8
1

𝑊8
2

𝑊8
3

0

0

−0.172 − 𝑗0.414

−0.172 − 𝑗0.414

−5.828 + 𝑗0.414

𝑋 𝑘 = 20,−5.82 − 𝑗2.414, 0, − 0.172 − 𝑗0.414, 0, −0.172 − 𝑗0.414 , 0, −5.828 + 𝑗0.414

𝑋 0

𝑋 4

𝑋 2

𝑋 6

𝑋 1

𝑋 5

𝑋 3

𝑋 7

−0.707 + 𝑗0.707

−2.121 − 𝑗2.121

𝑊8
0

𝑊8
2

𝑊8
0

𝑊8
0

𝑊8
0

𝑊8
0

−5.82 − 𝑗2.414

Step7 : The DFT output

is in bit reversed order

Step 6 : Evaluate the N point DFT using butterfly diagram
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IDFT Computation using Radix -2 FFT algorithm

The inverse DFT of an N-point sequence X(k), for k=0,1,2,…, N-1

𝑥(𝑛) =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋∗ 𝑘 𝑊𝑁
𝑛𝑘

∗

Q) Find the IDFT of the sequence X(k) = {10, -2+2j, -2, -2-2j} using DIT algorithm

Step 1 : Find the number of input samples (N)

N=4

Step 2 : Bir reversal

Input Binary
Bit-

reversed

Revised 

samples

x(0) 00 00 x(0)

x(1) 01 10 x(2)

x(2) 10 01 x(1)

x(3) 11 11 x(3)

Solution
Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

𝑀 = log2𝑁 = log2 4

𝑀 = 2

Step 4 : Calculate the number of max butterflies in stage

𝑁

2
=
4

2
= 2
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IDFT Computation using Radix -2 FFT algorithm

Step 5 : Calculate the twiddle factor

𝑘 =
𝑁𝑡

2𝑀
𝑡 = 0, 1, 2, … 2𝑀−1 − 1

Stage =1 (𝑀 = 1)

𝑡 = 0

𝑘 =
𝑁𝑡

2𝑀
=
4.0

21
= 0

𝑊4
0

𝑊4
0 = 𝑒

−
𝑗2𝜋

4
0
= 1

Stage =2 (𝑀 = 2)

𝑡 = 0,1

𝑘 =
4.0

22
= 0

for t=0

𝑘 =
4.1

22
= 1

for t=1

𝑊4
0

𝑊4
1

Step 6 : Find the conjugates of X(k)

X(k) = {10, -2+2j, -2, -2-2j} 

X*(k) = {10, -2-2j, -2, -2+2j} 
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𝑥 0 = 10

𝑥 2 = −2

10 + (−2 ∗ 1) = 8

10 − −2 ∗ 1 = 12𝑊4
0

𝑥 1 = −2 − 2𝑗

𝑥 3 = −2 + 2𝑗

−2 − 2𝑗 + −2 + 2𝑗 . 1 = −4

−2 − 2𝑗 − −2 + 2𝑗 . 1 = −4𝑗

𝑊4
0

𝑋∗ 𝑘 = 10, −2−2j, −2, −2+2j

Stage 1

𝑊4
0

𝑊4
1

𝑊4
0 = 1 𝑊4

1 = −𝑗

Stage 2

8 + −4 ∗ 1 = 4

12 + −4𝑗 ∗ −𝑗 = 8

8 − −4 ∗ 1 = 12

12 − −4𝑗 ∗ −𝑗 = 16

𝑥∗ 0

𝑥∗ 1

𝑥∗(2)

𝑥∗ 3

𝑥∗(𝑛) =
1

4
4, 8, 12, 16

Step 7 : Evaluate the IDFT using butterfly diagram

Step8 : The output is in

normal order and divide

it with N

𝑥 𝑛 = {1, 2, 3, 4}

IDFT Computation using Radix -2 FFT algorithm
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IDFT Computation using Radix -2 FFT algorithm

Q) Find the IDFT of the sequence X(k) = {7, 2, 3, 1+j} using DIF algorithm

Step 1 : Find the number of input samples (N)

N=4

Step 2 : Bit reversal

Input Binary
Bit-

reversed

Revised 

samples

x(0) 00 00 x(0)

x(1) 01 10 x(2)

x(2) 10 01 x(1)

x(3) 11 11 x(3)

Solution

Step 3 : Calculate the number of stages (𝑀 = log2𝑁)

𝑀 = log2𝑁 = log2 4

𝑀 = 2

Step 4 : Calculate the number of max butterflies in stage

𝑁

2
=
4

2
= 2
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IDFT Computation using Radix -2 FFT algorithm

Step 5 : Calculate the twiddle factor

𝑘 =
𝑁𝑡

2𝑀−𝑚+1 𝑡 = 0, 1, 2, …2𝑀−𝑚 − 1

Stage =2 (𝑀 = 2,𝑚 = 2)

𝑡 = 0

𝑘 =
𝑁𝑡

2𝑀
=
4.0

21
= 0

𝑊4
0

𝑊4
0 = 𝑒

−
𝑗2𝜋

4
0
= 1

Stage =1 (𝑀 = 2,𝑚 = 1)

𝑡 = 0,1

𝑘 =
4.0

22
= 0

for t=0

𝑘 =
4.1

22
= 1

for t=1

𝑊4
0

𝑊4
1

Step 6 : Find the conjugates of X(k)

X(k) = {7, 2, 3, 1+j} 

X*(k) = {7, 2, 3, 1-j} 

𝑊4
0 = 𝑒

−
𝑗2𝜋

4
0
= 1

www.iammanuprasad.com



Decimation in Frequency (DIF)

𝑥 0 = 7

𝑥 1 = 2

7 + 3 = 10

2 + 1 − 𝑗 = 3 − 𝑗

𝑊4
0

𝑥 2 = 3

𝑥 3 = 1 − 𝑗

7 − 3 . 1 = 4

2 − 1 − 𝑗 − 𝑗 = 1 − 𝑗

𝑊4
0

𝑋∗ 𝑘 = 7, 2, 3, 1−j

Stage 1

𝑊4
0

𝑊4
1

𝑊4
0 = 1 𝑊4

1 = −𝑗

Stage 2

10 + 3 − 𝑗 = 13 − 𝑗

10 − 3 − 𝑗 1 = 7 + 𝑗

4 + 1 − 𝑗 . 1 = 5 − 𝑗

4 − 1 − 𝑗 . 1 = 3 + 𝑗

𝑋 0

𝑋 2

𝑋(1)

𝑋 3

𝑥∗(𝑛) =
1

4
13 − 𝑗, 5 − 𝑗, 7 + 𝑗, 3 + 𝑗

Step8 : The output is in

normal order and divide it

with N

Step 7 : Evaluate the N point DFT using butterfly diagram
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Application of FFT

Efficient computation of DFT of two real sequences

Let x1(n) and x2(n) are two real sequences of length N and let x(n) be a complex values sequence defined as x(n) =x1(n)+jx2(n)

Now find the DFT of the sequence x(n) which is linear

𝑋 𝑘 = 𝑋1 𝑘 + 𝑗𝑋2(𝑘)

The sequences x1(n) and x2(n) can be expressed in terms of x(n) as

𝑥1 𝑛 =
𝑥 𝑛 + 𝑥∗(𝑛)

2
𝑥2 𝑛 =

𝑥 𝑛 − 𝑥∗(𝑛)

2𝑗

Then the DFT of x1(n) and x2(n) are

𝑋1 𝑘 =
1

2
𝐷𝐹𝑇 𝑥(𝑛) + 𝐷𝐹𝑇 𝑥∗(𝑛) 𝑋2 𝑘 =

1

2𝑗
𝐷𝐹𝑇 𝑥(𝑛) − 𝐷𝐹𝑇 𝑥∗(𝑛)

From conjugation property of twiddle factor

𝑥∗ 𝑛
𝐷𝐹𝑇

𝑋∗ 𝑁 − 𝑘 𝑋1 𝑘 =
1

2
𝑋 𝑘 + 𝑋∗ 𝑁 − 𝑘 𝑋2 𝑘 =

1

2𝑗
𝑋 𝑘 − 𝑋∗ 𝑁 − 𝑘
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Q) Find the DFT of two sequence x1(n) = {1,3,1,2} and x2(n) = {2,5,1,3}

Efficient computation of DFT of two real sequences

Solution

𝑥 𝑛 = 𝑥1 𝑛 + 𝑗𝑥2 𝑛 For n = 0,1,2,3 𝑥 𝑛 = 1 + 2𝑗, 3 + 5𝑗, 1 + 𝑗, 2 + 3𝑗

Now find the DFT of the sequence x(n) using DIT or DIF method

𝑥 0 = 1 + 2𝑗

𝑥 1 =, 3 + 5𝑗

2 + 3𝑗

5 + 8𝑗

𝑊4
0

𝑥 2 = 1 + 𝑗

𝑥 3 = 2 + 3𝑗

𝑗

2 − 𝑗

𝑊4
0

𝑥 𝑛 = 1 + 2𝑗, 3 + 5𝑗, 1 + 𝑗, 2 + 3𝑗

Stage 1

𝑊4
0

𝑊4
1

𝑊4
0 = 1 𝑊4

1 = −𝑗

Stage 2 7 + 11𝑗

−3 − 5𝑗

2

−2 + 2𝑗

𝑋 0

𝑋 2

𝑋(1)

𝑋 3

𝑋(𝑘) = 7 + 11𝑗, 2, −3 − 5𝑗, −2 + 2𝑗
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𝑋(𝑘) = 7 + 11𝑗, 2, −3 − 5𝑗, −2 + 2𝑗

Now we have to calculate X1(k) and X2(k)

For k=0

𝑋1(0) =
1

2
𝑋 0 + 𝑋∗ 4 − 0

=
1

2
7 + 11𝑗 + 7 − 11𝑗 = 7

For k=1

𝑋1(1) =
1

2
𝑋 1 + 𝑋∗ 4 − 1

=
1

2
2 + (−2 − 2𝑗) = −𝑗

For k=2

𝑋1(2) =
1

2
𝑋 2 + 𝑋∗ 4 − 2

=
1

2
−3 − 5𝑗 + (−3 + 5𝑗) = −3

For k=3

𝑋1(3) =
1

2
𝑋 3 + 𝑋∗ 4 − 3

=
1

2
−2 + 2𝑗 + (2) = 𝑗

𝑋1 𝑘 = 7,−𝑗, −3, 𝑗

For k=0

𝑋2(0) =
1

2𝑗
𝑋 0 − 𝑋∗ 4 − 0

=
1

2𝑗
7 + 11𝑗 − 7 − 11𝑗 = 11

For k=1

𝑋2(1) =
1

2𝑗
𝑋 1 − 𝑋∗ 4 − 1

=
1

2𝑗
2 − (−2 − 2𝑗) = −2𝑗 + 1

For k=2

𝑋2(2) =
1

2𝑗
𝑋 2 − 𝑋∗ 4 − 2

=
1

2𝑗
−3 − 5𝑗 − (−3 + 5𝑗) = −5

For k=3

𝑋2(3) =
1

2𝑗
𝑋 3 − 𝑋∗ 4 − 3

=
1

2
−2 + 2𝑗 − (2) = 2𝑗 + 1

𝑋2 𝑘 = 11,1 − 2𝑗, −5,1 + 2𝑗
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Application of FFT

Efficient computation of DFT of a 2N-point real sequence

Let g(n) is a real valued sequences of 2N points.

To find the 2N point DFT from N point DFT , we divide the
sequence to two

𝑥1 𝑛 = 𝑔 2𝑛 𝑥2 𝑛 = 𝑔 2𝑛 + 1

Now follow same as the DFT computation of two real sequence

𝑋1 𝑘 =
1

2
𝑋 𝑘 + 𝑋∗ 𝑁 − 𝑘 𝑋2 𝑘 =

1

2𝑗
𝑋 𝑘 − 𝑋∗ 𝑁 − 𝑘

Finally we must express the 2N point DT in terms of two N point
DFTs

𝐺 𝑘 = ෍

𝑛=0

𝑁−1

𝑔 2𝑛 𝑊2𝑁
2𝑛𝑘 + ෍

𝑛=0

𝑁−1

𝑔 2𝑛 + 1 𝑊2𝑁
(2𝑛+1)𝑘

= ෍

𝑛=0

𝑁−1

𝑥1 𝑛 𝑊2𝑁
2𝑛𝑘 +𝑊2𝑁

𝑘 ෍

𝑛=0

𝑁−1

𝑥2 𝑛 𝑊2𝑁
2𝑛𝑘

𝑊𝑁
2 = 𝑒

−
𝑗2𝜋

𝑁
2
= 𝑒

−
𝑗2𝜋
𝑁
2 = 𝑊𝑁

2

𝑊2𝑁
2 = 𝑒

−
𝑗2𝜋

2𝑁
2 = 𝑊𝑁

𝐺(𝑘) = ෍

𝑛=0

𝑁−1

𝑥1 𝑛 𝑊𝑁
𝑛𝑘 +𝑊2𝑁

𝑘 ෍

𝑛=0

𝑁−1

𝑥2 𝑛 𝑊𝑁
𝑛𝑘

𝐺 𝑘 = 𝑋1 𝑘 +𝑊2𝑁
𝑘 𝑋2 𝑘

𝐺 𝑘 + 𝑁 = 𝑋1 𝑘 −𝑊2𝑁
𝑘 𝑋2 𝑘

𝑊ℎ𝑒𝑟𝑒 𝑘 = 0,1,2,… , 𝑁 − 1
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Q) Find the DFT of the sequence x(n) = {1,3,7,2,1,2,1,3} using 4-point DFT

Efficient computation of DFT of a 2N-point real sequence

Solution

𝑥 𝑛 = 𝑥1 𝑛 + 𝑗𝑥2 𝑛 𝑥 𝑛 = 1 + 3𝑗, 7 + 2𝑗, 1 + 2𝑗, 1 + 3𝑗

Now find the DFT of the sequence x(n) using DIT or DIF method

𝑥 0 = 1 + 3𝑗

𝑥 1 = 7 + 2𝑗

2 + 5𝑗

8 + 5𝑗

𝑊4
0

𝑥 2 = 1 + 2𝑗

𝑥 3 = 1 + 3𝑗

𝑗

−1 − 6𝑗

𝑊4
0

𝑥 𝑛 = 1 + 3𝑗, 7 + 2𝑗, 1 + 2𝑗, 1 + 3𝑗

Stage 1

𝑊4
0

𝑊4
1

𝑊4
0 = 1 𝑊4

1 = −𝑗

Stage 2 10 + 10𝑗

−6

−1 − 5𝑗

1 + 7𝑗

𝑋 0

𝑋 2

𝑋(1)

𝑋 3

𝑋(𝑘) = 10 + 10𝑗, −1 − 5𝑗, −6,1 + 7𝑗

𝑥1 𝑛 = 1,7,1,1, 𝑥2 𝑛 = 3,2,2,3

www.iammanuprasad.com



𝑋(𝑘) = 10 + 10𝑗, −1 − 5𝑗, −6,1 + 7𝑗

Now we have to calculate X1(k) and X2(k)

For k=0

𝑋1(0) =
1

2
𝑋 0 + 𝑋∗ 4 − 0

=
1

2
10 + 10𝑗 + 10 − 10𝑗 = 10

For k=1

𝑋1(1) =
1

2
𝑋 1 + 𝑋∗ 4 − 1

=
1

2
−1 − 5𝑗 + 1 − 7𝑗 = −6𝑗

For k=2

𝑋1(2) =
1

2
𝑋 2 + 𝑋∗ 4 − 2

=
1

2
−6 + (−6) = −6

For k=3

𝑋1(3) =
1

2
𝑋 3 + 𝑋∗ 4 − 3

=
1

2
1 + 7𝑗 + −1 + 5𝑗 = 6𝑗

𝑋1 𝑘 = 10,−6𝑗, −6,6𝑗

For k=0

𝑋2(0) =
1

2𝑗
𝑋 0 − 𝑋∗ 4 − 0

=
1

2𝑗
10+10𝑗−(10−10𝑗) = 10

For k=1

𝑋2(1) =
1

2𝑗
𝑋 1 + 𝑋∗ 4 − 1

=
1

2𝑗
−1 − 5𝑗 − (1 − 7𝑗) = 1 + 𝑗

For k=2

𝑋2(2) =
1

2𝑗
𝑋 2 + 𝑋∗ 4 − 2

=
1

2𝑗
−6 − (−6) = 0

For k=3

𝑋2(3) =
1

2𝑗
𝑋 3 − 𝑋∗ 4 − 3

=
1

2
1 + 7𝑗 − −1 + 5𝑗 = 1 − 𝑗

𝑋2 𝑘 = 10, 1 + 𝑗, 0, 1 − 𝑗
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𝑋1 𝑘 = 10,−6𝑗, −6,6𝑗

𝑋2 𝑘 = 10, 1 + 𝑗, 0, 1 − 𝑗

Here 2N =8 so,

𝑊8
0 = 1 𝑊8

1 =
1

√2
− 𝑗

1

√2
𝑊8

2 = −𝑗 𝑊8
3 =

−1

√2
− 𝑗

1

√2

For k=0

𝑋 0 = 𝑋1 0 +𝑊8
0𝑋2 0

= 10 + 1. 10 = 20

For k=1

𝑋 1 = 𝑋1 1 +𝑊8
1𝑋2 1

= −6𝑗 + 1 + 𝑗
1

√2
− 𝑗

1

√2
= 2 − 6𝑗

For k=2

𝑋 2 = 𝑋1 2 +𝑊8
2𝑋2 2

= −6 + 0 −𝑗 = −6

For k=3

𝑋 3 = 𝑋1 3 +𝑊8
3𝑋2 3

= 6𝑗 + 1 − 𝑗
−1

√2
− 𝑗

1

√2
= − 2 + 6𝑗

For k=0

𝑋 0 + 4 = 𝑋1 0 −𝑊8
0𝑋2 0

= 10 − 1. 10 = 0

For k=1

𝑋 1 + 4 = 𝑋1 1 −𝑊8
1𝑋2 1

= −6𝑗 − 1 + 𝑗
1

√2
− 𝑗

1

√2
= − 2 − 6𝑗

For k=2

𝑋 2 + 4 = 𝑋1 2 −𝑊8
2𝑋2 2

= −6 − 0 −𝑗 = −6

For k=3

𝑋 3 + 4 = 𝑋1 3 −𝑊8
3𝑋2 3

= 6𝑗 − 1 − 𝑗
−1

√2
− 𝑗

1

√2
= 2 + 6𝑗

𝑋 𝑘 = 20, 2 − 6𝑗, −6,− 2 + 6𝑗, 0, − 2 − 6𝑗, −6, 2 + 6𝑗
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Finite Impulse Response (FIR) Filters

• What is a Filter?

• Any medium through which the signal passes, whatever its form, can be regarded as a filter.

• However, we do not usually think of something as a filter unless it can modify the signal in some way. For example,
speaker wire is not considered a filter, but the speaker is

• A digital filter is just a filter that operates on digital signals, such as sound represented inside a
computer.

• It is a computation which takes one sequence of numbers (the input signal) and produces a new
sequence of numbers (the filtered output signal).

Types of Filter

YouTube - IMPLearn 
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• It is one of two main types of digital filters used in DSP applications.

• FIR filter gets its name because the same number (finite) input values you get going into the filter, you get coming out of
the output

• The design methods of FIR filter based on approximation of ideal filter

• Properties of FIR filter

• Require no feedback: This means that any rounding errors are not compounded by summed iterations. The same
relative error occurs in each calculation. This also makes implementation simpler.

• Inherent stability: This is due to the fact that, because there is no required feedback, all the poles are located at the
origin and thus are located within the unit circle (the required condition for stability in a Z transformed system).

• Phase Issue: can easily be designed to be linear phase by making the coefficient sequence symmetric; linear phase,
or phase change proportional to frequency, corresponds to equal delay at all frequencies. This property is
sometimes desired for phase-sensitive applications, for example data communications, crossover filters, and
mastering.

• The main disadvantage of FIR filters is that considerably more computation power

Finite Impulse Response (FIR) Filters
YouTube - IMPLearn 
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Finite Impulse Response (FIR) Filters

• A discrete-time FIR filter of order N. The top part is an N-stage delay line with N +
1 taps. Each unit delay is a z−1 operator in the Z-transform notation.

• The output y of a linear time invariant system is determined by convolving its input
signal x with its impulse response b.

• For a discrete-time FIR filter, the output is a weighted sum of the current and a
finite number of previous values of the input.

• The operation is described by the following equation, which defines the output
sequence y[n] in terms of its input sequence x[n]:

𝑦 𝑛 = 𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1 + 𝑏2𝑥 𝑛 − 2 + … + 𝑏𝑁𝑥 𝑛 − 𝑁

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑏𝑘𝑥 𝑛 − 𝑘

• x(n) : is the input sequence

• y(n) : is the output sequence

• bk : filter coefficients that make up the impulse response

• N: is the filter order

YouTube - IMPLearn 
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FIR Impulse response

𝑦 𝑛 = ෍

𝑘=0

𝑁−1

𝑏𝑘𝑥 𝑛 − 𝑘

The Z-transform of the impulse response yields the transfer function of the FIR filter

ℎ(𝑛) = ෍

𝑘=0

𝑁−1

𝑏𝑘𝛿 𝑛 − 𝑘

H(𝑧) = 𝑍 ℎ 𝑛

= ෍

𝑛=−∞

∞

ℎ 𝑛 𝑧−𝑛

𝐻 𝑧 = ෍

𝑛=0

𝑁−1

𝑏𝑛𝑧
−𝑛
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Linear phase FIR filter – Symmetric Impulse response

Let h(n) be an impulse response of a system then its Fourier transform can
be expressed as

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛 ----------------- (1)

Since H(ejωn) is a complex value for linear phase FIR filter , then we can
represent it in terms of magnitude and phase

𝐻 𝑒𝑗𝜔 = ± 𝐻 𝑒𝑗𝜔 𝑒−𝑗𝛼𝜔

Equating (1) & (2)

----------------- (2)

෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 𝑒−𝑗𝛼𝜔

෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 − 𝑗 sin𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 cos𝛼𝜔 − 𝑗 sin 𝛼𝜔

𝑒−𝑗𝜃 = cos 𝜃 − 𝑗 sin 𝜃

Equating sin and cos terms

෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 cos 𝛼𝜔

෍

𝑛=0

𝑁−1

ℎ 𝑛 sin𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 sin 𝛼𝜔

----------------- (3)

----------------- (4)

(4) / (3)

σ𝑛=0
𝑁−1 ℎ 𝑛 sin𝜔𝑛

σ𝑛=0
𝑁−1ℎ 𝑛 cos𝜔𝑛

=
sin 𝛼𝜔

cos 𝛼𝜔

෍

𝑛=0

𝑁−1

ℎ 𝑛 sin𝜔𝑛 cos 𝛼𝜔 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 sin 𝛼𝜔

0 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 sin 𝛼𝜔 − sin𝜔𝑛 cos𝛼𝜔

sin 𝐴 − 𝐵 = sin𝐴 cos𝐵 − cos𝐴 sin𝐵

෍

𝑛=0

𝑁−1

ℎ 𝑛 sin 𝛼 − 𝑛 𝜔 = 0

The above equation will be zero when

ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

𝛼 =
𝑁 − 1

2
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The expression for Phase delay and group delay are

Linear phase FIR filter – Symmetric Impulse response

τ𝑝 =
−𝜃 𝜔

𝜔
τ𝑔 =

−𝑑𝜃 𝜔

𝑑𝜔

For FIR filter

𝜃 𝜔 = −𝛼𝜔 , −𝜋 ≤ 𝜔 ≤ 𝜋 From the equations and the conditions we can conclude that FIR filter will have

constant phase and group delays when the impulse response is symmetrical about 𝛼 =
𝑁−1

2

1

2

0 1 2 3 4 5 6

3 3

2

1

3

𝛼 =
𝑁 − 1

2
=
7 − 1

2
= 3

ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

𝛼 =
𝑁 − 1

2

ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

ℎ 5 = ℎ 7 − 1 − 5

= ℎ 1

For N is odd

𝛼 =
𝑁 − 1

2
=
6 − 1

2
= 2.5

ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

ℎ 5 = ℎ 6 − 1 − 5

= ℎ 0

For N is even

1

2

0 1 2 3 4 5

2

1

2 2
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Linear phase FIR filter – Antisymmetric Impulse response

Let h(n) be an impulse response of a system then its Fourier transform can
be expressed as

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛 ----------------- (1)

Since H(ejωn) is a complex value for linear phase FIR filter , then we can
represent it in terms of magnitude and phase. If only constant group delay
is required

𝐻 𝑒𝑗𝜔 = ± 𝐻 𝑒𝑗𝜔 𝑒−𝑗(𝛽−𝛼𝜔)

Equating (1) & (2)

----------------- (2)

෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 𝑒−𝑗(𝛽−𝛼𝜔)

෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 − 𝑗 sin𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 cos(𝛽 − 𝛼𝜔) − 𝑗 sin(𝛽 − 𝛼𝜔)

𝑒−𝑗𝜃 = cos 𝜃 − 𝑗 sin 𝜃

Equating sin and cos terms

෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 cos(𝛽 − 𝛼𝜔)

෍

𝑛=0

𝑁−1

ℎ 𝑛 sin𝜔𝑛 = ± 𝐻 𝑒𝑗𝜔 sin(𝛽 − 𝛼𝜔)

----------------- (3)

----------------- (4)

(4) / (3)

σ𝑛=0
𝑁−1 ℎ 𝑛 sin𝜔𝑛

σ𝑛=0
𝑁−1ℎ 𝑛 cos𝜔𝑛

=
sin(𝛽 − 𝛼𝜔)

cos(𝛽 − 𝛼𝜔)

෍

𝑛=0

𝑁−1

ℎ 𝑛 sin𝜔𝑛 cos(𝛽 − 𝛼𝜔) = ෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 sin(𝛽 − 𝛼𝜔)

0 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 cos𝜔𝑛 sin(𝛽 − 𝛼𝜔) − sin𝜔𝑛 cos(𝛽 − 𝛼𝜔)

sin 𝐴 − 𝐵 = sin𝐴 cos𝐵 − cos𝐴 sin𝐵

෍

𝑛=0

𝑁−1

ℎ 𝑛 sin 𝛽 − (𝛼 − 𝑛)𝜔 = 0

The equation will be zero when

ℎ 𝑛 = −ℎ 𝑁 − 1 − 𝑛

𝛼 =
𝑁 − 1

2

𝜃 𝜔 = 𝛽 − 𝛼𝜔

𝛽 =
𝜋

2

෍

𝑛=0

𝑁−1

ℎ 𝑛 cos 𝛼 − 𝑛 𝜔 = 0
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The expression for Phase delay and group delay are

Linear phase FIR filter – Asymmetric Impulse response

τ𝑝 =
−𝜃 𝜔

𝜔
τ𝑔 =

−𝑑𝜃 𝜔

𝑑𝜔

For FIR filter

𝜃 𝜔 = 𝛽 − 𝛼𝜔 , −𝜋 ≤ 𝜔 ≤ 𝜋 From the equations and the conditions we can conclude that FIR filter will have
constant group delay and not constant phase delay

𝛼 =
𝑁 − 1

2
=
7 − 1

2
= 3

ℎ 𝑛 = −ℎ 𝑁 − 1 − 𝑛

𝛼 =
𝑁 − 1

2

ℎ 𝑛 = −ℎ 𝑁 − 1 − 𝑛

ℎ 5 = −ℎ 7 − 1 − 5

= −ℎ 1

For N is odd

𝛼 =
𝑁 − 1

2
=
6 − 1

2
= 2.5

ℎ 𝑛 = −ℎ 𝑁 − 1 − 𝑛

ℎ 5 = −ℎ 6 − 1 − 5

= ℎ 0

For N is even

1

2

0 1 2 3 4 5

-2

1

1

2

0 1 2 3 4 5 6

-2

-1
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Frequency response of Linear phase FIR filters

Depending on the value of N and the type of symmetry of filter impulse response sequence 
there  are mainly 4  types of  linear phase FIR filter

Symmetrical impulse 
response , N=odd

Symmetrical impulse 
response , N=even

Antisymmetric impulse 
response , N=odd

Antisymmetric impulse 
response , N=even
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Case1 : Symmetrical impulse response and N - odd 

𝑁 = 7

𝛼 =
𝑁 − 1

2
= 3

1

2

0 1 2 3 4 5 6

3

2

1

ℎ 𝑛

Given h(n) and find the Fourier transform H(ejω)

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛

Since N is odd the centre of symmetry will be at n =
𝑁−1

2

Now lets split the equation into three parts

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ℎ
𝑁 − 1

2
𝑒
−𝑗𝜔

𝑁−1
2 + ෍

𝑛=
𝑁+1
2

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛

To arrange the limit we assume

𝑚 = 𝑁 − 1 − 𝑛

𝑛 = 𝑁 − 1 −𝑚

When 𝑛 =
𝑁+1

2

𝑁 + 1

2
= 𝑁 − 1 −𝑚

𝑚 =
𝑁 − 3

2

When 𝑛 = 𝑁 − 1

𝑁 − 1 = 𝑁 − 1 −𝑚

𝑚 = 0

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ℎ
𝑁 − 1

2
𝑒
−𝑗𝜔

𝑁−1
2 + ෍

𝑚=0

𝑁−3
2

ℎ 𝑁 − 1 −𝑚 𝑒−𝑗𝜔 𝑁−1−𝑚

----------------- (1)

Substitute in (1)

Put m=n

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ℎ
𝑁 − 1

2
𝑒
−𝑗𝜔

𝑁−1
2 + ෍

𝑛=0

𝑁−3
2

ℎ 𝑁 − 1 − 𝑛 𝑒−𝑗𝜔 𝑁−1−𝑛

For symmetric impulse response ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ℎ
𝑁 − 1

2
𝑒
−𝑗𝜔

𝑁−1
2 + ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔 𝑁−1−𝑛
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Case1 : Symmetrical impulse response and N - odd 

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ℎ
𝑁 − 1

2
𝑒
−𝑗𝜔

𝑁−1
2 + ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔 𝑁−1−𝑛

Taking 𝑒
−𝑗𝜔

𝑁−1

2 outside

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ℎ

𝑁 − 1

2
+ ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛. 𝑒
𝑗𝜔

𝑁−1
2 + 𝑒−𝑗𝜔 𝑁−1−𝑛 . 𝑒

𝑗𝜔
𝑁−1
2

= 𝑒
−𝑗𝜔

𝑁−1
2 ℎ

𝑁 − 1

2
+ ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒
𝑗𝜔

𝑁−1
2

−𝑛
+ 𝑒

−𝑗𝜔 𝑁−1−𝑛−
𝑁−1
2

= 𝑒
−𝑗𝜔

𝑁−1
2 ℎ

𝑁 − 1

2
+ ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒
𝑗𝜔

𝑁−1
2

−𝑛
+ 𝑒

−𝑗𝜔
𝑁−1
2

−𝑛

2 cos 𝜃 = 𝑒𝑗𝜃 + 𝑒−𝑗𝜃

= 𝑒
−𝑗𝜔

𝑁−1
2 ℎ

𝑁 − 1

2
+ ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 2 cos𝜔
𝑁 − 1

2
− 𝑛

Let

𝑘 =
𝑁 − 1

2
− 𝑛

𝑛 =
𝑁 − 1

2
− 𝑘

When 𝑛 = 0

0 =
𝑁 − 1

2
− 𝑘

𝑘 =
𝑁 − 1

2

When 𝑛 =
𝑁−3

2

𝑁 − 3

2
=
𝑁 − 1

2
− 𝑘

𝑘 = 1

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ℎ

𝑁 − 1

2
+ ෍

𝑘=1

𝑁−1
2

2ℎ
𝑁 − 1

2
− 𝑘 cos𝜔𝑘

Put k = n

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ℎ

𝑁 − 1

2
+ ෍

𝑛=1

𝑁−1
2

2ℎ
𝑁 − 1

2
− 𝑛 cos𝜔𝑛

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁−1
2

𝑎 𝑛 cos𝜔𝑛

𝑎 0 = ℎ
𝑁 − 1

2
𝑎 𝑛 = 2ℎ

𝑁 − 1

2
− 𝑛

Where
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𝑎 𝑛 = 2ℎ
𝑁 − 1

2
− 𝑛

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁−1
2

𝑎 𝑛 cos𝜔𝑛

𝑎 0 = ℎ
𝑁 − 1

2

Where

Case1 : Symmetrical impulse response and N - odd 

From this we can express the amplitude and phase function

𝐻 𝑒𝑗𝜔 = ෍

𝑛=1

𝑁−1
2

𝑎 𝑛 cos𝜔𝑛

Amplitude

∠𝐻 𝑒𝑗𝜔 = −𝜔
𝑁 − 1

2
= −𝛼𝜔

Phase
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Case2 : Symmetrical impulse response and N - even 

1

2

0 1 2 3 4 5

2

1

ℎ 𝑛

𝑁 = 6

𝛼 =
𝑁 − 1

2
= 2.5

Given h(n) and find the Fourier transform H(ejω)

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛

Since N is even the centre of symmetry will be at n =
𝑁−1

2

Then we can split the equation into two parts

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ෍

𝑛=
𝑁
2

𝑁−1

ℎ 𝑛 𝑒−𝑗𝜔𝑛

For symmetric impulse response with even number of samples and

centre of symmetry lies between 𝑛 =
𝑁−2

2
and

𝑁

2

----------------- (1)

To arrange the limit we assume

𝑚 = 𝑁 − 1 − 𝑛

𝑛 = 𝑁 − 1 −𝑚

When 𝑛 =
𝑁

2

𝑁

2
= 𝑁 − 1 −𝑚

𝑚 =
𝑁

2
− 1

When 𝑛 = 𝑁 − 1

𝑁 − 1 = 𝑁 − 1 −𝑚

𝑚 = 0

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ෍

𝑚=0

𝑁−2
2

ℎ 𝑁 − 1 −𝑚 𝑒−𝑗𝜔 𝑁−1−𝑚

Substitute in (1)

Put m=n

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−3
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ℎ
𝑁 − 1

2
𝑒
−𝑗𝜔

𝑁−1
2 + ෍

𝑛=0

𝑁−2
2

ℎ 𝑁 − 1 − 𝑛 𝑒−𝑗𝜔 𝑁−1−𝑛

For symmetric impulse response ℎ 𝑛 = ℎ 𝑁 − 1 −𝑚

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ෍

𝑛=0

𝑁−1
2

ℎ 𝑛 𝑒−𝑗𝜔 𝑁−1−𝑛
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Case2 : Symmetrical impulse response and N - even

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛 + ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒−𝑗𝜔 𝑁−1−𝑛

Taking 𝑒
−𝑗𝜔

𝑁−1

2 outside

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒−𝑗𝜔𝑛. 𝑒
𝑗𝜔

𝑁−1
2 + 𝑒−𝑗𝜔 𝑁−1−𝑛 . 𝑒

𝑗𝜔
𝑁−1
2

= 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒
𝑗𝜔

𝑁−1
2

−𝑛
+ 𝑒

−𝑗𝜔 𝑁−1−𝑛−
𝑁−1
2

= 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 𝑒
𝑗𝜔

𝑁−1
2

−𝑛
+ 𝑒

−𝑗𝜔
𝑁−1
2

−𝑛

2 cos 𝜃 = 𝑒𝑗𝜃 + 𝑒−𝑗𝜃

= 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=0

𝑁−2
2

ℎ 𝑛 2 cos𝜔
𝑁 − 1

2
− 𝑛

Let

𝑘 =
𝑁

2
− 𝑛

𝑛 =
𝑁

2
− 𝑘

When 𝑛 = 0

0 =
𝑁

2
− 𝑘

𝑘 =
𝑁

2

When 𝑛 =
𝑁−2

2

𝑁 − 2

2
=
𝑁

2
− 𝑘

𝑘 = 1

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑘=1

𝑁
2

2ℎ
𝑁

2
− 𝑘 cos𝜔 𝑘 −

1

2

Put k = n

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁
2

2ℎ
𝑁

2
− 𝑛 cos𝜔 𝑛 −

1

2

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁
2

𝑏 𝑛 cos𝜔 𝑛 −
1

2

𝑏 𝑛 = 2ℎ
𝑁

2
− 𝑛

Where

𝑁 − 1

2
− 𝑛 =

𝑁

2
− 𝑛 −

1

2
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𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁
2

𝑏 𝑛 cos𝜔 𝑛 −
1

2

𝑏 𝑛 = 2ℎ
𝑁

2
− 𝑛

Where

Case2 : Symmetrical impulse response and N - even 

From this we can express the amplitude and phase function

𝐻 𝑒𝑗𝜔 = ෍

𝑛=1

𝑁
2

𝑏 𝑛 cos𝜔 𝑛 −
1

2

Amplitude

∠𝐻 𝑒𝑗𝜔 = −𝜔
𝑁 − 1

2
= −𝛼𝜔

Phase
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Case 3 : Antisymmetrical impulse response and N - odd 

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 𝑒

𝑗𝜋
2 ෍

𝑛=1

𝑁−1
2

𝑐 𝑛 sin𝜔 𝑛

𝑐 𝑛 = 2ℎ
𝑁 − 1

2
− 𝑛

Where

From this we can express the amplitude and phase function

𝐻 𝑒𝑗𝜔 = ෍

𝑛=1

𝑁−1
2

𝑐 𝑛 cos𝜔 𝑛

Amplitude

∠𝐻 𝑒𝑗𝜔 =
𝜋

2
−

𝑁 − 1

2
𝜔 =

𝜋

2
− 𝛼𝜔

Phase

In the similar way of symmetric, we get for antisymmetric as
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Case 4 : Ant symmetrical impulse response and N - even

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 𝑒

𝑗𝜋
2 ෍

𝑛=1

𝑁
2

𝑑 𝑛 sin𝜔 𝑛 −
1

2

𝑑 𝑛 = 2ℎ
𝑁

2
− 𝑛

Where

From this we can express the amplitude and phase function

𝐻 𝑒𝑗𝜔 = ෍

𝑛=1

𝑁
2

𝑑 𝑛 sin𝜔 𝑛 −
1

2

Amplitude

∠𝐻 𝑒𝑗𝜔 =
𝜋

2
−

𝑁 − 1

2
𝜔 =

𝜋

2
− 𝛼𝜔

Phase

In the similar way of symmetric, we get for antisymmetric as
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𝑎 𝑛 = 2ℎ
𝑁 − 1

2
− 𝑛

SUMMARY 

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁
2

𝑏 𝑛 cos𝜔 𝑛 −
1

2

𝑏 𝑛 = 2ℎ
𝑁

2
− 𝑛

Where

Case2 : Symmetrical impulse response and N – even

Case 3 : Ant symmetrical impulse response and N - odd 

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 𝑒

𝑗𝜋
2 ෍

𝑛=1

𝑁−1
2

𝑐 𝑛 sin𝜔 𝑛

𝑐 𝑛 = 2ℎ
𝑁 − 1

2
− 𝑛

Where

Case 4 : Ant symmetrical impulse response and N - even

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 𝑒

𝑗𝜋
2 ෍

𝑛=1

𝑁
2

𝑑 𝑛 sin𝜔 𝑛 −
1

2

𝑑 𝑛 = 2ℎ
𝑁

2
− 𝑛

Where

𝐻 𝑒𝑗𝜔 = 𝑒
−𝑗𝜔

𝑁−1
2 ෍

𝑛=1

𝑁−1
2

𝑎 𝑛 cos𝜔𝑛

𝑎 0 = ℎ
𝑁 − 1

2

Where

Case1 : Symmetrical impulse response and N - odd 
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Design of linear phase FIR filter

Why do we need a filter?

Sensor
A to D 

converter

A notch / band 
stop filter (50-

Hz)

Frequency response of a practical lowpass filter
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Digital filter design

1. Determining specification : we need to know how strong the noise component is relative to the
desired signal and how much we need to suppress the noise. This information is necessary to find
the filter with minimum order for this application.

2. Finding a transfer function : we need to find a transfer function H(z) which will provide the
required filtering.

3. Choosing a realization structure : there are many systems which can give the obtained transfer
function and we must choose the appropriate one.

4. Implementing the filter : You have a couple of options for this step: a software implementation
(such as a MATLAB or C code) or a hardware implementation (such as a DSP, a microcontroller,
or an ASIC).
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Design of linear phase FIR filter : window method

Suppose that we want to design a lowpass filter with a cut off
frequency of ωc ,given frequency response

𝐻𝑑 𝜔 = ቊ
1 , 𝜔 < 𝜔𝑐

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

To find the equivalent time-domain representation, we calculate
the inverse discrete-time Fourier transform

ℎ𝑑 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝐻𝑑 𝜔 𝑒𝑗𝜔𝑛𝑑𝜔

=
1

2𝜋
න

−𝜔𝑐

𝜔𝑐

𝑒𝑗𝜔𝑛𝑑𝜔

=
sin 𝑛𝜔𝑐

𝑛𝜋

needs an infinite number of input samples to
perform filtering and that the system is not a causal system. The
solution will be to truncate the impulse response and use,

YouTube - IMPLearn 

www.iammanuprasad.com



Design of linear phase FIR filter : window method

hd(n) Non causal system causal system & linear

but the system is delayed by 𝑛 =
𝑁−1

2

There for considering an applied shift to hd(n) and then multiplying with
window function W(n)

ℎ 𝑛 = ℎ𝑑 𝑛 −
𝑁 − 1

2
∗ 𝑊(𝑛)
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Design of linear phase FIR filter : window method

Frequency response of the filter designed by a rectangular window
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Design of linear phase FIR filter : window methods

Rectangular window Hanning window Hamming window

𝑊𝑅 𝑛 = ቐ1
− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝐻𝑛 𝑛 = ൞
0.5 − 0.5 cos

2𝜋𝑛

𝑁 − 1
,

− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝐻𝑚 𝑛 = ൞
0.54 − 0.46 cos

2𝜋𝑛

𝑁 − 1
,

− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑅 𝑛 = ቊ
1 0 ≤ 𝑛 ≤ 𝑁
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑅 𝑛 = ൞
0.5 − 0.5 cos

2𝜋𝑛

𝑁
, 0 ≤ 𝑛 ≤ 𝑁

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑅 𝑛 = ൞
0.54 − 0.46 cos

2𝜋𝑛

𝑁
, 0 ≤ 𝑛 ≤ 𝑁

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

or or or
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Design of linear phase FIR filter : window method

Design procedure

1. Choose desired frequency response of the filter 𝐻𝑑 𝑒𝑗𝜔

2. Take the invert Fourier transform of 𝐻𝑑 𝑒𝑗𝜔 to obtain ℎ𝑑 𝑛

3. Choose a window sequence 𝑊 𝑛 and multiply it with ℎ𝑑 𝑛 to convert
infinite duration impulse response to finite duration impulse response

ℎ 𝑛 = ℎ𝑑 𝑛 ∗ 𝑊 𝑛

4. The transfer function of the filter is obtained by taking Z-transform of h(n)
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Q) Design an ideal lowpass filter with frequency response

find the value of h(n) for N=11 find H(z).

𝐻𝑑 𝑒𝑗𝜔 = ቐ
1 𝑓𝑜𝑟 −

𝜋

2
≤ 𝜔 ≤

𝜋

2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 1

𝐻𝑑 𝑒𝑗𝜔

−
𝜋

2

𝜋

2

From the figure we know 𝛼 = 0

Solution

We can determine the desired impulse response ℎ𝑑 𝑛 by taking inverse
Fourier Transform

ℎ𝑑 𝑛 =
1

2𝜋
න

−
𝜋
2

𝜋
2

1. 𝑒𝑗𝜔𝑛𝑑𝜔

=
1

2𝜋𝑗𝑛
𝑒
𝑗𝑛𝜋
2 − 𝑒

−𝑗𝑛𝜋
2

sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

=
1

2𝜋𝑗𝑛
2𝑗 sin

𝜋𝑛

2 =
sin

𝜋𝑛
2

𝑛𝜋

Truncating ℎ𝑑 𝑛 to 11 samples

ℎ𝑑 𝑛 =

sin
𝜋𝑛
2

𝑛𝜋 𝑓𝑜𝑟 = −5 ≤ 𝑛 ≤ 5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since for n=0 the equation becomes infinity so lets
apply limit

for n=0

ℎ 0 = lim
𝑛→0

sin
𝜋𝑛
2

𝑛𝜋
lim
𝑛→0

sin 𝑛

𝑛
= 1

= lim
𝑛→0

sin
𝜋𝑛
2

𝑛𝜋
2
2

=
1

2

for n=1

ℎ 1 =
sin

𝜋
2

𝜋
=
1

𝜋
= 0.318 = ℎ −1

ℎ 2 =
sin 𝜋

2𝜋
= 0 = ℎ −2

ℎ 3 =
sin

3𝜋
2

3𝜋
=
−1

3𝜋
= −0.106 = ℎ −3

ℎ 4 =
sin

4𝜋
2

4𝜋
= 0 = ℎ −4

ℎ 5 =
sin

5𝜋
2

5𝜋
=

1

5𝜋
= 0.0636 = ℎ −5

for n=2

for n=3

for n=4

for n=5
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Now lets find the transfer function of the filter by taking Z Transform

𝐻 𝑍 = ෍

𝑛=−
𝑁−1
2

𝑁−1
2

ℎ 𝑛 𝑍−𝑛 = ෍

𝑛=−5

5

ℎ 𝑛 𝑍−𝑛

= ℎ −5 𝑍5 + ℎ −4 𝑍4 + ℎ −3 𝑍3 + ℎ −2 𝑍2 + ℎ −1 𝑍1 + ℎ 0 + ℎ 1 𝑍−1 + ℎ 2 𝑍−2 + ℎ 3 𝑍−3 + ℎ 4 𝑍−4 + ℎ 5 𝑍−5

= ℎ 0 +෍

𝑛=1

5

ℎ 𝑛 𝑍𝑛 + 𝑍−𝑛

= 0.5 + 0.318 𝑍1 + 𝑍−1 + 0 − 0.106 𝑍3 + 𝑍−3 + 0 + 0.0636 𝑍5 + 𝑍−5

The transfer function of the realizable filter is

𝐻′ 𝑍 = 𝑍
−

𝑁−1
2 𝐻 𝑍

= 𝑍−5 0.5 + 0.318 𝑍1 + 𝑍−1 − 0.106 𝑍3 + 𝑍−3 + 0.0636 𝑍5 + 𝑍−5

𝐻′ 𝑍 = 0.0636 − 0.106𝑍−2 + 0.318𝑍−4 + 0.5𝑍−5 + 0.318𝑍−6 − 0.106𝑍−8 + 0.0636𝑍−10

ℎ 0 = ℎ 10 = 0.0636

ℎ 1 = ℎ 9 = 0

ℎ 2 = ℎ 8 = −0.106

ℎ 3 = ℎ 7 = 0

ℎ 4 = ℎ 6 = 0.318

ℎ 5 = 0
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Design of linear phase FIR filter : window method

Design Steps

1. Plot the desired frequency response 𝐻𝑑 𝑒𝑗𝜔

2. Determine the desired impulse response ℎ𝑑 𝑛 by taking

the inverse Fourier transform of 𝐻𝑑 𝑒𝑗𝜔

3. Find the value of ℎ𝑑 𝑛 for all ‘n’

4. Choose a window sequence 𝑊 𝑛 and multiply it with
ℎ𝑑 𝑛 to get impulse response h(n)

5. Take the Z – Transform of h(n)to get transfer function of the
filter which is given and find coefficients

𝒉𝒅 𝒏 =
𝟏

𝟐𝝅
න

−
𝝅
𝟐

𝝅
𝟐

𝟏. 𝒆𝒋𝝎𝒏𝒅𝝎

ℎ 𝑛 = ℎ𝑑 𝑛 ∗𝑊 𝑛

𝐻′ 𝑍 = 𝑍
−

𝑁−1
2 𝐻 𝑍
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FIR FILTER DESIGN USING RECTANGULAR WINDOW

Q) Design a linear phase FIR low pass filter using rectangular window by taking 7 samples of
window sequence and with a cut off frequency 𝜔𝑐 = 0.2𝜋 𝑟𝑎𝑑/𝑠𝑒𝑐

Q) Design a linear phase FIR filter low pass filter with frequency response

𝐻𝑑 𝑒𝑗𝜔 = ቊ
1 𝑓𝑜𝑟 − 𝜔𝑐 ≤ 𝜔 ≤ 𝜔
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝜔𝑐 = 0.2𝜋 and N=7

or

1

𝐻𝑑 𝑒𝑗𝜔

−0.2𝜋 0.2𝜋

We can determine the desired impulse response
ℎ𝑑 𝑛 by taking inverse Fourier Transform

ℎ𝑑 𝑛 =
1

2𝜋
න

−0.2𝜋

0.2𝜋

1. 𝑒𝑗𝜔𝑛𝑑𝜔

=
1

2𝜋𝑗𝑛
𝑒𝑗0.2𝜋𝑛 − 𝑒−𝑗0.2𝜋𝑛

=
1

2𝜋𝑗𝑛
2𝑗 sin 0.2𝜋𝑛 =

sin 0.2𝜋𝑛

𝑛𝜋

Truncating ℎ𝑑 𝑛 to 7 samples

ℎ𝑑 𝑛 =

sin 0.2𝜋𝑛

𝑛𝜋 𝑓𝑜𝑟 = −3 ≤ 𝑛 ≤ 3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since for n=0 the equation becomes infinity so lets
apply limit

for n=0

ℎ𝑑 0 = lim
𝑛→0

sin 0.2𝜋𝑛

𝑛𝜋
= lim

𝑛→0

sin 0.2𝜋𝑛
𝑛𝜋
0.2

0.2
= 0.2

for n=1

ℎ𝑑 1 =
sin 0.2𝜋

𝜋
= 0.187 = ℎ𝑑 −1

ℎ𝑑 2 =
sin 0.2𝜋2

2𝜋
= 0.151 = ℎ𝑑 −2

ℎ𝑑 3 =
sin 0.2𝜋3

3𝜋
= 0.1009 = ℎ𝑑 −3

Solution

sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

lim
𝑛→0

sin 𝑛

𝑛
= 1

for n=2

for n=3
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FIR FILTER DESIGN USING RECTANGULAR WINDOW

Now using rectangular window sequence W(n) and multiply ℎ𝑑 𝑛 with it to get the impulse
response h(n)

Rectangular window

𝑊𝑅 𝑛 = ቐ1
− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑅 𝑛 = ቊ
1 0 ≤ 𝑛 ≤ 3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since 𝛼 = 0 we get a non causal filter coefficient symmetrical about n=0
so h(n) = h(-n)

for n=0 ℎ 0 = ℎ𝑑 0 .𝑊𝑅(0) = 0.2

for n=1 ℎ 1 = ℎ𝑑 1 .𝑊𝑅(1) = 0.187 = ℎ −1

for n=2 ℎ 2 = ℎ𝑑 2 .𝑊𝑅(2) = 0.1514 = ℎ −2

for n=3 ℎ 3 = ℎ𝑑 3 .𝑊𝑅(3) = 0.1009 = ℎ −3

ℎ 𝑛 = 0.1009, 0.1514, 0.187, 0.2, 0.187,0.1514,0.1009

Now lets find the transfer function of the filter by taking Z Transform

𝐻 𝑍 = ෍

𝑛=−
𝑁−1
2

𝑁−1
2

ℎ 𝑛 𝑍−𝑛 = ෍

𝑛=−3

3

ℎ 𝑛 𝑍−𝑛

= ℎ −3 𝑍3 + ℎ −2 𝑍2 + ℎ −1 𝑍1 + ℎ 0 + ℎ 1 𝑍−1

+ ℎ 2 𝑍−2 + ℎ 3 𝑍−3

𝐻 𝑍 = ℎ 0 +෍

𝑛=1

3

ℎ 𝑛 𝑍𝑛 + 𝑍−𝑛

= 0.2 + 0.187 𝑍1 + 𝑍−1 + 0.151 𝑍2 + 𝑍−2 + 0.1009 𝑍3 + 𝑍−3

The transfer function of the realizable filter is

𝐻′ 𝑍 = 𝑍
−

𝑁−1
2 𝐻 𝑍

= 𝑍−3 0.2 + 0.187 𝑍1 + 𝑍−1 + 0.151 𝑍2 + 𝑍−2 + 0.1009 𝑍3 + 𝑍−3

= 0.1009 + 0.151𝑍−1 + 0.187𝑍−2 + 0.2𝑍−3 + 0.187𝑍−4 + 0.151𝑍−5

+ 0.1009𝑍−6

ℎ 0 = ℎ 6 = 0.1009 ℎ 1 = ℎ 5 = 0.151

ℎ 2 = ℎ 4 = 0.187 ℎ 3 = 0.2
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FIR FILTER DESIGN USING RECTANGULAR WINDOW

Q) Design a linear phase FIR high pass filter with frequency response

𝐻𝑑 𝑒𝑗𝜔 = ቐ
1 𝑓𝑜𝑟

𝜋

4
≤ |𝜔| ≤ 𝜋

0 𝑓𝑜𝑟 𝜔 <
𝜋

4

Find the value of h(n) for N=11 and find H(z). Use rectangular window

We can determine the desired impulse response
ℎ𝑑 𝑛 by taking inverse Fourier Transform

ℎ𝑑 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝐻𝑑 𝑒𝑗𝜔 . 𝑒𝑗𝜔𝑛 𝑑𝜔

=
1

2𝜋
න

−𝜋

−
𝜋
4

1. 𝑒𝑗𝜔𝑛𝑑𝜔 + න
𝜋
4

𝜋

1. 𝑒𝑗𝜔𝑛𝑑𝜔

=
1

2𝜋

𝑒𝑗𝜔𝑛

𝑗𝑛
−𝜋

−
𝜋
4

+
1

2𝜋

𝑒𝑗𝜔𝑛

𝑗𝑛 𝜋
4

𝜋

Truncating ℎ𝑑 𝑛 to 11 samples

Since for n=0 the equation becomes infinity so lets apply
limit

for n=0

ℎ𝑑 0 = lim
𝑛→0

sin 𝜋𝑛

𝑛𝜋
− lim

𝑛→0

sin
𝜋𝑛
4

𝑛𝜋
4
4

= 1 −
1

4

for n=1

ℎ𝑑 1 =
sin 𝜋 − sin

𝜋
4

𝜋
= −0.225 = ℎ𝑑 −1

Solution

sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

lim
𝑛→0

sin 𝑛

𝑛
= 1

1

𝐻𝑑 𝑒𝑗𝜔

−𝜋

1

−
𝜋

4
𝜋𝜋

4
0

From the figure we know 𝛼 = 0
also symmetric

=
−1

2𝜋𝑗𝑛
𝑒
𝑗𝑛𝜋
4 − 𝑒

−𝑗𝑛𝜋
4 − 𝑒𝑗𝜋𝑛 − 𝑒−𝑗𝜋𝑛

=
−1

2𝜋𝑗𝑛
2𝑗 sin

𝑛𝜋

4
− 2𝑗 sin 𝑛𝜋

ℎ𝑑 𝑛 =
sin 𝑛𝜋 − sin

𝑛𝜋
4

𝜋𝑛

=
3

4

for n=2

ℎ𝑑 2 =
sin 2𝜋 − sin

2𝜋
4

2𝜋

= −0.1591 = ℎ𝑑 −2

for n=3

ℎ𝑑 3 =
sin 3𝜋 − sin

3𝜋
4

3𝜋

= −0.075 = ℎ𝑑 −3

for n=4

ℎ𝑑 4 =
sin 4𝜋 − sin

4𝜋
4

4𝜋

= 0 = ℎ𝑑 −4

for n=5

ℎ𝑑 5 =
sin 5𝜋 − sin

5𝜋
4

5𝜋

= 0.045 = ℎ𝑑 −5
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FIR FILTER DESIGN USING RECTANGULAR WINDOW

Now using rectangular window sequence WR(n) and multiply ℎ𝑑 𝑛 with it to get the impulse
response h(n)

Rectangular window

𝑊𝑅 𝑛 = ቐ1
− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑅 𝑛 = ቊ
1 0 ≤ 𝑛 ≤ 5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since 𝛼 = 0 we get a non causal filter coefficient symmetrical about n=0
so h(n) = h(-n)

for n=0 ℎ 0 = ℎ𝑑 0 .𝑊𝑅(0) = 0.75

for n=1 ℎ 1 = ℎ𝑑 1 .𝑊𝑅(1) = −0.225 = ℎ −1

for n=2 ℎ 2 = ℎ𝑑 2 .𝑊𝑅(2) = −0.1591 = ℎ −2

for n=3 ℎ 3 = ℎ𝑑 3 .𝑊𝑅(3) = −0.075 = ℎ −3

ℎ 𝑛
= ሾ

ሿ
0.0450,0, −0.075,−0.1591,−0.225,0.75,−0.225 − 0.1591

− 0.0750,0.0450

𝐻 𝑍 = ℎ 0 +෍

𝑛=1

3

ℎ 𝑛 𝑍𝑛 + 𝑍−𝑛

= 0.75 − 0.225 𝑍1 + 𝑍−1 − 0.159 𝑍2 + 𝑍−2 − 0.075 𝑍3 + 𝑍−3

+ 0.045 𝑍5 + 𝑍−5

The transfer function of the realizable filter is

𝐻′ 𝑍 = 𝑍
−

𝑁−1
2 𝐻 𝑍

= 𝑍−5ሾ
ሿ

0.75 − 0.225 𝑍1 + 𝑍−1 − 0.159 𝑍2 + 𝑍−2 − 0.075 𝑍3 + 𝑍−3

+ 0.045 𝑍5 + 𝑍−5

= 0.045 − 0.075𝑍−2 − 0.159𝑍−3 − 0.225𝑍−4 + 0.75𝑍−5 − 0.225𝑍−6

− 0.1591𝑍−7 − 0.075𝑍−8 + 0.045𝑍−10

ℎ 0 = ℎ 10 = 0.045

ℎ 1 = ℎ 9 = 0

ℎ 2 = ℎ 8 = −0.075

ℎ 3 = ℎ 7 = −0.159

for n=4 ℎ 4 = ℎ𝑑 4 .𝑊𝑅(4) = 0 = ℎ −4

for n=5 ℎ 5 = ℎ𝑑 5 .𝑊𝑅(5) = 0.0450 = ℎ −5

Now lets find the transfer function of the filter by taking Z Transform

𝐻 𝑍 = ෍

𝑛=−
𝑁−1
2

𝑁−1
2

ℎ 𝑛 𝑍−𝑛 = ෍

𝑛=−5

5

ℎ 𝑛 𝑍−𝑛

= ℎ −5 𝑍5 + ℎ −4 𝑍4 + ℎ −3 𝑍3 + ℎ −2 𝑍2 + ℎ −1 𝑍1

+ ℎ 0 + ℎ 1 𝑍−1 + ℎ 2 𝑍−2 + ℎ 3 𝑍−3 + ℎ 4 𝑍−4

+ ℎ 5 𝑍−5

ℎ 4 = ℎ 6 = −0.225

ℎ 5 = 0.75
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FIR FILTER DESIGN USING HANNING WINDOW

Q) Design a linear phase FIR filter high pass filter with frequency response

𝐻𝑑 𝑒𝑗𝜔 = ቐ
1 𝑓𝑜𝑟

𝜋

4
≤ |𝜔| ≤ 𝜋

0 𝑓𝑜𝑟 𝜔 <
𝜋

4

Find the value of h(n) for N=11 and find H(z). Using Hanning window

We can determine the desired impulse response
ℎ𝑑 𝑛 by taking inverse Fourier Transform

ℎ𝑑 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝐻𝑑 𝑒𝑗𝜔 . 𝑒𝑗𝜔𝑛 𝑑𝜔

=
1

2𝜋
න

−𝜋

−
𝜋
4

1. 𝑒𝑗𝜔𝑛𝑑𝜔 + න
𝜋
4

𝜋

1. 𝑒𝑗𝜔𝑛𝑑𝜔

=
1

2𝜋

𝑒𝑗𝜔𝑛

𝑗𝑛
−𝜋

−
𝜋
4

+
1

2𝜋

𝑒𝑗𝜔𝑛

𝑗𝑛 𝜋
4

𝜋

Truncating ℎ𝑑 𝑛 to 11 samples

Since for n=0 the equation becomes infinity so lets apply limit

for n=0

ℎ𝑑 0 = lim
𝑛→0

sin 𝜋𝑛

𝑛𝜋
− lim

𝑛→0

sin
𝜋𝑛
4

𝑛𝜋
4
4

= 1 −
1

4

for n=1

ℎ𝑑 1 =
sin 𝜋 − sin

𝜋
4

𝜋
= −0.225 = ℎ𝑑 −1

Solution

sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

lim
𝑛→0

sin 𝑛

𝑛
= 1

1

𝐻𝑑 𝑒𝑗𝜔

−𝜋

1

−
𝜋

4
𝜋𝜋

4
0

From the figure we know 𝛼 = 0
also symmetric

=
−1

2𝜋𝑗𝑛
𝑒
𝑗𝑛𝜋
4 − 𝑒

−𝑗𝑛𝜋
4 − 𝑒𝑗𝜋𝑛 − 𝑒−𝑗𝜋𝑛

=
−1

2𝜋𝑗𝑛
2𝑗 sin

𝑛𝜋

4
− 2𝑗 sin 𝑛𝜋

ℎ𝑑 𝑛 =
sin 𝑛𝜋 − sin

𝑛𝜋
4

𝜋𝑛

=
3

4

for n=2

ℎ𝑑 2 =
sin 2𝜋 − sin

2𝜋
4

2𝜋

= −0.1591 = ℎ𝑑 −2

for n=3

ℎ𝑑 3 =
sin 3𝜋 − sin

3𝜋
4

3𝜋

= −0.075 = ℎ𝑑 −3

for n=4

ℎ𝑑 4 =
sin 4𝜋 − sin

4𝜋
4

4𝜋

= 0 = ℎ𝑑 −4

for n=5

ℎ𝑑 5 =
sin 5𝜋 − sin

5𝜋
4

5𝜋

= 0.045 = ℎ𝑑 −5
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𝑊𝐻𝑛 𝑛 = ቐ0.5 + 0.5 cos
2𝑛𝜋

10
0 ≤ 𝑛 ≤ 5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Hanning window

𝑊𝐻𝑛 𝑛 = ൞
0.5 − 0.5 cos

2𝜋𝑛

𝑁 − 1
,

− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝐻𝑛 0 = 0.5 + 0.5 = 1

𝑊𝐻𝑛 1 = 0.5 + 0.5 cos
𝜋

5
= 09045 = 𝑊𝐻𝑛 −1

𝑊𝐻𝑛 2 = 0.5 + 0.5 cos
2𝜋

5
= 0.655 = 𝑊𝐻𝑛 −2

𝑊𝐻𝑛 3 = 0.5 + 0.5 cos
3𝜋

5
= 0.345 = 𝑊𝐻𝑛 −3

𝑊𝐻𝑛 4 = 0.5 + 0.5 cos
4𝜋

5
= 0.0945 = 𝑊𝐻𝑛 −4

𝑊𝐻𝑛 5 = 0.5 + 0.5 cos
5𝜋

5
= 0 = 𝑊𝐻𝑛 −5

Since 𝛼 = 0 we get a non causal filter coefficient symmetrical
about n=0 so h(n) = h(-n)
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FIR FILTER DESIGN USING HANNING WINDOW

Now using Hanning window sequence WHn(n) and multiply ℎ𝑑 𝑛 with it to get the impulse
response h(n)

for n=0 ℎ 0 = ℎ𝑑 0 .𝑊𝐻𝑛(0) = 0.75

for n=1 ℎ 1 = ℎ𝑑 1 .𝑊𝐻𝑛(1) = −0.225 0.905 = −0.204 = ℎ −1

for n=2 ℎ 2 = ℎ𝑑 2 .𝑊𝐻𝑛(2) = −0.159 0.655 = −0.104 = ℎ −2

for n=3 ℎ 3 = ℎ𝑑 3 .𝑊𝐻𝑛(3) = −0.075 0.345 = −0.026 = ℎ −3

ℎ 𝑛 = −0.026,−0.104,−0.204,0.75,−0.204,−0.104,−0.026

𝐻 𝑍 = ℎ 0 +෍

𝑛=1

5

ℎ 𝑛 𝑍𝑛 + 𝑍−𝑛

= 0.75 − 0.204 𝑍1 + 𝑍−1 − 0.104 𝑍2 + 𝑍−2 − 0.026 𝑍3 + 𝑍−3

The transfer function of the realizable filter is

𝐻′ 𝑍 = 𝑍
−

𝑁−1
2 𝐻 𝑍

= 𝑍−5 0.75 − 0.204 𝑍1 + 𝑍−1 − 0.104 𝑍2 + 𝑍−2 − 0.026 𝑍3 + 𝑍−3

= −0.026𝑍−2 − 0.104𝑍−3 − 0.204𝑍−4 + 0.75𝑍−5 − 0.204𝑍−6

− 0.104𝑍−7 − 0.026𝑍−8

ℎ 0 = ℎ 1 = ℎ 9 = ℎ 10 = 0

ℎ 2 = ℎ 8 = −0.026

ℎ 3 = ℎ 7 = −0.104

for n=4 ℎ 4 = ℎ𝑑 4 .𝑊𝐻𝑛(4) = 0 = ℎ −4

for n=5 ℎ 5 = ℎ𝑑 5 .𝑊𝐻𝑛(5) = 0 = ℎ −5

Now lets find the transfer function of the filter by taking Z Transform

𝐻 𝑍 = ෍

𝑛=−
𝑁−1
2

𝑁−1
2

ℎ 𝑛 𝑍−𝑛 = ෍

𝑛=−5

5

ℎ 𝑛 𝑍−𝑛

= ℎ −5 𝑍5 + ℎ −4 𝑍4 + ℎ −3 𝑍3 + ℎ −2 𝑍2 + ℎ −1 𝑍1

+ ℎ 0 + ℎ 1 𝑍−1 + ℎ 2 𝑍−2 + ℎ 3 𝑍−3 + ℎ 4 𝑍−4

+ ℎ 5 𝑍−5

= 0.75(1)

ℎ 𝑛 = ℎ𝑑 𝑛 .𝑊𝐻𝑛 𝑛 𝑓𝑜𝑟 − 5 ≤ 𝑛 ≤ 5

ℎ 4 = ℎ 6 = −0.204

ℎ 5 = 0.75
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FIR FILTER DESIGN USING HAMMING WINDOW

Q) Design a linear phase FIR filter high pass filter with frequency response

𝐻𝑑 𝑒𝑗𝜔 = ቐ
1 𝑓𝑜𝑟

𝜋

4
≤ |𝜔| ≤ 𝜋

0 𝑓𝑜𝑟 𝜔 <
𝜋

4

Find the value of h(n) for N=11 and find H(z). Using Hamming window

We can determine the desired impulse response
ℎ𝑑 𝑛 by taking inverse Fourier Transform

ℎ𝑑 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝐻𝑑 𝑒𝑗𝜔 . 𝑒𝑗𝜔𝑛 𝑑𝜔

=
1

2𝜋
න

−𝜋

−
𝜋
4

1. 𝑒𝑗𝜔𝑛𝑑𝜔 + න
𝜋
4

𝜋

1. 𝑒𝑗𝜔𝑛𝑑𝜔

=
1

2𝜋

𝑒𝑗𝜔𝑛

𝑗𝑛
−𝜋

−
𝜋
4

+
1

2𝜋

𝑒𝑗𝜔𝑛

𝑗𝑛 𝜋
4

𝜋

Truncating ℎ𝑑 𝑛 to 11 samples

Since for n=0 the equation becomes infinity so lets apply limit

for n=0

ℎ𝑑 0 = lim
𝑛→0

sin 𝜋𝑛

𝑛𝜋
− lim

𝑛→0

sin
𝜋𝑛
4

𝑛𝜋
4
4

= 1 −
1

4

for n=1

ℎ𝑑 1 =
sin 𝜋 − sin

𝜋
4

𝜋
= −0.225 = ℎ𝑑 −1

Solution

sin 𝜃 =
𝑒𝑗𝜃 − 𝑒−𝑗𝜃

2𝑗

lim
𝑛→0

sin 𝑛

𝑛
= 1

1

𝐻𝑑 𝑒𝑗𝜔

−𝜋

1

−
𝜋

4
𝜋𝜋

4
0

From the figure we know 𝛼 = 0
also symmetric

=
−1

2𝜋𝑗𝑛
𝑒
𝑗𝑛𝜋
4 − 𝑒

−𝑗𝑛𝜋
4 − 𝑒𝑗𝜋𝑛 − 𝑒−𝑗𝜋𝑛

=
−1

2𝜋𝑗𝑛
2𝑗 sin

𝑛𝜋

4
− 2𝑗 sin 𝑛𝜋

ℎ𝑑 𝑛 =
sin 𝑛𝜋 − sin

𝑛𝜋
4

𝜋𝑛

=
3

4

for n=2

ℎ𝑑 2 =
sin 2𝜋 − sin

2𝜋
4

2𝜋

= −0.1591 = ℎ𝑑 −2

for n=3

ℎ𝑑 3 =
sin 3𝜋 − sin

3𝜋
4

3𝜋

= −0.075 = ℎ𝑑 −3

for n=4

ℎ𝑑 4 =
sin 4𝜋 − sin

4𝜋
4

4𝜋

= 0 = ℎ𝑑 −4

for n=5

ℎ𝑑 5 =
sin 5𝜋 − sin

5𝜋
4

5𝜋

= 0.045 = ℎ𝑑 −5
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𝑊𝐻 𝑛 = ቐ0.54 + 0.46 cos
2𝑛𝜋

10
0 ≤ 𝑛 ≤ 5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Hamming window

𝑊𝐻 𝑛 = ൞
0.54 − 0.46 cos

2𝜋𝑛

𝑁 − 1
,

− 𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

FIR FILTER DESIGN USING HAMMING WINDOW

𝑊𝐻 0 = 0.54 + 0.46 = 1

𝑊𝐻 1 = 0.54 + 0.46 cos
𝜋

5
= 0.912 = 𝑊𝐻 −1

𝑊𝐻 2 = 0.54 + 0.46 cos
2𝜋

5
= 0.682 = 𝑊𝐻 −2

𝑊𝐻 3 = 0.54 + 0.46 cos
3𝜋

5
= 0.398 = 𝑊𝐻 −3

𝑊𝐻 4 = 0.54 + 0.46 cos
4𝜋

5
= 0.1678 = 𝑊𝐻 −4

𝑊𝐻 5 = 0.54 + 0.46 cos
5𝜋

5
= 0.08 = 𝑊𝐻 −5

Since 𝛼 = 0 we get anon causal filter coefficient symmetrical about
n=0 so h(n) = h(-n)
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FIR FILTER DESIGN USING HAMMING WINDOW

Now using Hamming window sequence WH(n) and multiply ℎ𝑑 𝑛 with it to get the impulse
response h(n)

for n=0 ℎ 0 = ℎ𝑑 0 .𝑊𝐻(0) = 0.75

for n=1 ℎ 1 = ℎ𝑑 1 .𝑊𝐻(1) = −0.225 0.912 = −0.2056 = ℎ −1

for n=2 ℎ 2 = ℎ𝑑 2 .𝑊𝐻(2) = −0.159 0.682 = −0.1084 = ℎ −2

for n=3 ℎ 3 = ℎ𝑑 3 .𝑊𝐻(3) = −0.075 0.398 = −0.03 = ℎ −3

ℎ 𝑛
= 0.0036,−0.03,−0.1084,−0.2056,0.75,−0.2056,−0.1084,−0.03,0.0036

𝐻 𝑍 = ℎ 0 +෍

𝑛=1

5

ℎ 𝑛 𝑍𝑛 + 𝑍−𝑛

= 0.75 − 0.2056 𝑍1 + 𝑍−1 − 0.1084 𝑍2 + 𝑍−2 − 0.03 𝑍3 + 𝑍−3

+ 0.0036 𝑍5 + 𝑍−5

The transfer function of the realizable filter is

𝐻′ 𝑍 = 𝑍
−

𝑁−1
2 𝐻 𝑍

= 𝑍−5ሾ
ሿ

0.75 − 0.2056 𝑍1 + 𝑍−1 − 0.1084 𝑍2 + 𝑍−2 − 0.03 𝑍3 + 𝑍−3

+ 0.0036 𝑍5 + 𝑍−5

= 0.0036 − 0.03𝑍−2 − 0.1084𝑍−3 − 0.2052𝑍−4 + 0.75𝑍−5

− 0.2052𝑍−6 − 0.1084𝑍−7 − 0.03𝑍−8 + 00036𝑍−10

ℎ 0 = ℎ 10 = 0.0036

ℎ 1 = ℎ 9 = 0

ℎ 3 = ℎ 7 = −0.1084

for n=4 ℎ 4 = ℎ𝑑 4 .𝑊𝐻(4) = 0 = ℎ −4

for n=5 ℎ 5 = ℎ𝑑 5 .𝑊𝐻(5) = −0.045 0.08 = 0.0036 = ℎ −5

Now lets find the transfer function of the filter by taking Z Transform

𝐻 𝑍 = ෍

𝑛=−
𝑁−1
2

𝑁−1
2

ℎ 𝑛 𝑍−𝑛 = ෍

𝑛=−5

5

ℎ 𝑛 𝑍−𝑛

= ℎ −5 𝑍5 + ℎ −4 𝑍4 + ℎ −3 𝑍3 + ℎ −2 𝑍2 + ℎ −1 𝑍1

+ ℎ 0 + ℎ 1 𝑍−1 + ℎ 2 𝑍−2 + ℎ 3 𝑍−3 + ℎ 4 𝑍−4

+ ℎ 5 𝑍−5

= 0.75(1)

ℎ 𝑛 = ℎ𝑑 𝑛 .𝑊𝐻 𝑛 𝑓𝑜𝑟 − 5 ≤ 𝑛 ≤ 5

ℎ 4 = ℎ 6 = −0.2052

ℎ 5 = 0.75ℎ 2 = ℎ 8 = −0.03
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Design of linear phase FIR filter by frequency sampling technique

In this method the ideal frequency response is sampled at sufficient number of points these samples are the DFT
coefficients of impulse response of filter. Hence impulse response of filter is determined by taking inverse DFT

Steps

1. Choose a desired frequency response 𝐻𝑑 𝑒𝑗𝜔

2. Sample 𝐻𝑑 𝑒𝑗𝜔 at N point by taking 𝜔 = 𝜔𝑘 =
2𝜋𝑘

𝑁
where k=0,1,2,3 … N-1

3. Compute the N samples of impulse response h(n) using the equation

4. Take Z-Transform of impulse response h(n) to get filter transfer function H(z)

ℎ 𝑛 =
1

𝑁
𝐻 0 + 2෍

𝑘=1

𝑁−1
2

𝑅𝑒 𝐻 𝑘 𝑒
𝑗2𝜋𝑛𝑘
𝑁 , 𝑓𝑜𝑟 𝑁 = 𝑜𝑑𝑑

ℎ 𝑛 =
1

𝑁
𝐻 0 + 2෍

𝑘=1

𝑁
2
−1

𝑅𝑒 𝐻 𝑘 𝑒
𝑗2𝜋𝑛𝑘
𝑁 , 𝑓𝑜𝑟 𝑁 = 𝑒𝑣𝑒𝑛

𝐻 𝑍 = ෍

𝑛=0

𝑁−1

ℎ 𝑛 𝑍−𝑛
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Q) Design a linear phase FIR low pass filter with cut off frequency of 0.5π rad/sample by taking 11
samples of ideal frequency response

Design of linear phase FIR filter by frequency sampling technique

Solution

1

𝐻𝑑 𝑒𝑗𝜔

−0.5𝜋 0.5𝜋
Step1 : Find the desired frequency response

𝐻𝑑 𝑒𝑗𝜔

0 0.5𝜋 𝜋 2𝜋1.5𝜋

For digital sampling we are taking the limit as 0 to 2π

Step2: Sample 𝐻𝑑 𝑒𝑗𝜔 at N point by taking

𝜔 = 𝜔𝑘 =
2𝜋𝑘

𝑁

𝐻𝑑 𝑒𝑗𝜔 = ൞
1. 𝑒−𝑗𝛼𝜔

0

, 0 ≤ 𝜔 ≤ 0.5𝜋
, 0.5𝜋 ≤ 𝜔 ≤ 1.5𝜋

1. 𝑒−𝑗𝛼𝜔 ,1.5𝜋 ≤ 𝜔 ≤ 2𝜋

Due to symmetricity at (N-1)/2 then there will be an α
exponential term in the expression

𝑤ℎ𝑒𝑟𝑒, 𝛼 =
𝑁 − 1

2
=
11 − 1

2
= 5

Sampling frequency 𝜔𝑘 =
2𝜋𝑘

11
for k= 0 to 10

for k=0 𝜔0 =
2𝜋 ∗ 0

11
= 0

for k=1 𝜔0 =
2𝜋 ∗ 1

11
= 0.18𝜋

for k=2 𝜔0 =
2𝜋 ∗ 2

11
= 0.36𝜋

for k=3 𝜔0 =
2𝜋 ∗ 3

11
= 0.55𝜋

for k=4 𝜔0 =
2𝜋 ∗ 4

11
= 0.73𝜋

for k=5 𝜔0 =
2𝜋 ∗ 5

11
= 0.91𝜋

for k=6 𝜔0 =
2𝜋 ∗ 6

11
= 1.09𝜋

for k=7 𝜔0 =
2𝜋 ∗ 7

11
= 1.27𝜋

for k=8 𝜔0 =
2𝜋 ∗ 8

11
= 1.45𝜋

for k=9 𝜔0 =
2𝜋 ∗ 9

11
= 1.64𝜋

for k=10 𝜔0 =
2𝜋 ∗ 10

11
= 1.82𝜋

0 1 2 3 4 5 6 7 8 9 10

𝐻 𝑘

𝑘

𝐻 𝑘 =
𝑒−𝑗5

2𝜋𝑘
11

0

, 𝑓𝑜𝑟 𝑘 = 0,1,2
, 𝑓𝑜𝑟 𝑘 = 3 𝑡𝑜 8

𝑒−𝑗5
2𝜋𝑘
11 , 𝑓𝑜𝑟 𝑘 = 9,10
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Design of linear phase FIR filter by frequency sampling technique

Step 3: Compute the N samples of impulse response h(n)

ℎ 𝑛 =
1

𝑁
𝐻 0 + 2෍

𝑘=1

𝑁−1
2

𝑅𝑒 𝐻 𝑘 𝑒
𝑗2𝜋𝑛𝑘
𝑁

ℎ 𝑛 =
1

𝑁
𝐻 0 + 2෍

𝑘=1

𝑁−1
2

𝑅𝑒 𝐻 𝑘 𝑒
𝑗2𝜋𝑛𝑘
𝑁 , 𝑓𝑜𝑟 𝑁 = 𝑜𝑑𝑑

=
1

11
1 + 2෍

𝑘=1

5

𝑅𝑒 𝑒−𝑗5
2𝜋𝑘
11 𝑒

𝑗2𝜋𝑛𝑘
11

𝐻 𝑘 =
𝑒−𝑗5

2𝜋𝑘
11

0

, 𝑓𝑜𝑟 𝑘 = 0,1,2
, 𝑓𝑜𝑟 𝑘 = 3 𝑡𝑜 8

𝑒−𝑗5
2𝜋𝑘
11 , 𝑓𝑜𝑟 𝑘 = 9,10

=
1

11
1 + 2෍

𝑘=1

2

𝑅𝑒 𝑒−𝑗5
2𝜋𝑘
11 𝑒

𝑗2𝜋𝑛𝑘
11

=
1

11
1 + 2෍

𝑘=1

2

𝑅𝑒 𝑒𝑗
2𝜋𝑘
11

𝑛−5

=
1

11
1 + 2𝑅𝑒 𝑒𝑗

2𝜋
11

𝑛−5 + 2𝑅𝑒 𝑒𝑗
4𝜋
11

𝑛−5

ℎ 𝑛 =
1

11
1 + 2 cos

2𝜋

11
𝑛 − 5 + 2 cos

4𝜋

11
𝑛 − 5
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Design of linear phase FIR filter by frequency sampling technique

Now let’s calculate h(n) for n = 0 to 10, using symmetric condition ( h(n)=h(N-1-m) )

ℎ 0 =
1

11
1 + 2 cos

2𝜋

11
0 − 5 + 2 cos

4𝜋

11
0 − 5

for n=0

= 0.0694

ℎ 1 =
1

11
1 + 2 cos

2𝜋

11
1 − 5 + 2 cos

4𝜋

11
1 − 5

for n=1

= −0.054

ℎ 2 =
1

11
1 + 2 cos

2𝜋

11
2 − 5 + 2 cos

4𝜋

11
2 − 5

for n=2

= −0.1094

ℎ 3 =
1

11
1 + 2 cos

2𝜋

11
3 − 5 + 2 cos

4𝜋

11
3 − 5

for n=3

= 0.0473

ℎ 4 =
1

11
1 + 2 cos

2𝜋

11
4 − 5 + 2 cos

4𝜋

11
4 − 5

for n=4

= 0.3194

ℎ 5 =
1

11
1 + 2 cos

2𝜋

11
5 − 5 + 2 cos

4𝜋

11
−5

for n=5

= 0.4595

for n=6

ℎ 6 = ℎ 11 − 1 − 6 = ℎ 4 = 0.3194

for n=7

ℎ 7 = ℎ 11 − 1 − 7 = ℎ 3 = 0.0473

for n=8

ℎ 8 = ℎ 11 − 1 − 8 = ℎ 2 = −0.1094

for n=9

ℎ 9 = ℎ 11 − 1 − 9 = ℎ 1 = −0.054

for n=10

ℎ 10 = ℎ 11 − 1 − 10 = ℎ 0 = 0.0694
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Design of linear phase FIR filter by frequency sampling technique

Step 4: Take Z-Transform of impulse response h(n) to get filter transfer function H(z)

𝐻 𝑍 = ෍

𝑛=0

10

ℎ 𝑛 𝑍−𝑛

= ℎ 0 𝑍0 + ℎ 1 𝑍−1 + ℎ 2 𝑍−2 + ℎ 3 𝑍−3 + ℎ 4 𝑍−4 + ℎ 5 𝑍−5 + ℎ 6 𝑍−6 + ℎ 7 𝑍−7 + ℎ 8 𝑍−8 + ℎ 9 𝑍−9 + ℎ 10 𝑍−10

𝐻 𝑍 = 0.0694 1 + 𝑍−10 − 0.054 𝑍−1 + 𝑍−9 − 0.1094 𝑍−2 + 𝑍−8 + 0.0473 𝑍−3 + 𝑍−7 + 0.3194 𝑍−4 + 𝑍−6 + 0.4595𝑍−5
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Q) Using frequency sampling method, design a band pass filter with the following specifications , sampling frequency
F=8000Hz ,cut off frequency fc1=1000Hz, fc2=3000Hz, Determine the filter coefficients for N=7

Design of linear phase FIR filter by frequency sampling technique

Solution

Step1 : Find the desired frequency response

𝐻𝑑 𝑒𝑗𝜔

0 𝜋

4
3𝜋

4

7𝜋

4

5𝜋

4

For digital sampling we are taking the limit as 0 to 2π

Step2: Sample 𝐻𝑑 𝑒𝑗𝜔 at N point by taking

𝜔 = 𝜔𝑘 =
2𝜋𝑘

𝑁

𝐻𝑑 𝑒𝑗𝜔 = ൞
𝑒−𝑗𝛼𝜔

0

, 0.25𝜋 ≤ 𝜔 ≤ 0.75𝜋
, 0.75𝜋 ≤ 𝜔 ≤ 1.25𝜋

𝑒−𝑗𝛼𝜔 ,1.25𝜋 ≤ 𝜔 ≤ 1.7𝜋

Due to symmetricity at (N-1)/2 then there will be an α
exponential term in the expression

𝑤ℎ𝑒𝑟𝑒, 𝛼 =
𝑁 − 1

2
=
7 − 1

2
= 3

Sampling frequency 𝜔𝑘 =
2𝜋𝑘

7
for k= 0 to 6

for k=0 𝜔0 =
2𝜋 ∗ 0

7
= 0

for k=1 𝜔0 =
2𝜋 ∗ 1

7
= 0.28𝜋

for k=2 𝜔0 =
2𝜋 ∗ 2

7
= 0.57𝜋

for k=3 𝜔0 =
2𝜋 ∗ 3

7
= 0.85𝜋

for k=4 𝜔0 =
2𝜋 ∗ 4

7
= 1.14𝜋

for k=5 𝜔0 =
2𝜋 ∗ 5

7
= 1.4𝜋

𝐻 𝑘 =

0

𝑒−𝑗3
2𝜋𝑘
7

0

, 𝑓𝑜𝑟 𝑘 = 0
, 𝑓𝑜𝑟 𝑘 = 1,2
, 𝑓𝑜𝑟 𝑘 = 3 , 4

𝑒−𝑗3
2𝜋𝑘
7 , 𝑓𝑜𝑟 𝑘 = 5,6

𝜔𝑐1 = 2𝜋𝑓𝑐1𝑇 =
2𝜋𝑓𝑐1
𝐹

=
2𝜋1000

8000
=
𝜋

4
= 0.25𝜋

𝜔𝑐2 = 2𝜋𝑓𝑐2𝑇 =
2𝜋𝑓𝑐2
𝐹

=
2𝜋3000

8000
=
3𝜋

4
= 0.75𝜋

for k=6 𝜔0 =
2𝜋 ∗ 6

7
= 1.71𝜋

0 0
.2

5
π

0
.2

8
π

0
.5

7
π

0
.8

5
π

1
.1

4
π

𝐻 𝑘

𝑘

0
.7

5
π

1
.2

5
π

1
.7

1
π

1
.7

5
π

1
.4

π
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Design of linear phase FIR filter by frequency sampling technique

Step 3: Compute the N samples of impulse response h(n)

ℎ 𝑛 =
1

𝑁
𝐻 0 + 2෍

𝑘=1

𝑁−1
2

𝑅𝑒 𝐻 𝑘 𝑒
𝑗2𝜋𝑛𝑘
𝑁

ℎ 𝑛 =
1

𝑁
𝐻 0 + 2෍

𝑘=1

𝑁−1
2

𝑅𝑒 𝐻 𝑘 𝑒
𝑗2𝜋𝑛𝑘
𝑁 , 𝑓𝑜𝑟 𝑁 = 𝑜𝑑𝑑

=
1

7
0 + 2෍

𝑘=1

3

𝑅𝑒 𝑒−𝑗3
2𝜋𝑘
7 𝑒

𝑗2𝜋𝑛𝑘
7

𝐻 𝑘 =

0

𝑒−𝑗3
2𝜋𝑘
7

0

, 𝑓𝑜𝑟 𝑘 = 0
, 𝑓𝑜𝑟 𝑘 = 1,2
, 𝑓𝑜𝑟 𝑘 = 3 , 4

𝑒−𝑗3
2𝜋𝑘
7 , 𝑓𝑜𝑟 𝑘 = 5,6

=
1

7
2෍

𝑘=1

2

𝑅𝑒 𝑒−𝑗3
2𝜋𝑘
7 𝑒

𝑗2𝜋𝑛𝑘
7

=
2

7
෍

𝑘=1

2

𝑅𝑒 𝑒𝑗
2𝜋𝑘
7

𝑛−3

=
2

7
2𝑅𝑒 𝑒−𝑗

2𝜋
7

𝑛−3 + 2𝑅𝑒 𝑒−𝑗
4𝜋
7

𝑛−3

ℎ 𝑛 =
2

7
2 cos

2𝜋

7
𝑛 − 3 + 2 cos

4𝜋

7
𝑛 − 3
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Design of linear phase FIR filter by frequency sampling technique

Now let’s calculate h(n) for n = 0 to 6, using symmetric condition ( h(n)=h(N-1-n) )

ℎ 0 =
2

7
2 cos

2𝜋

7
0 − 3 + 2 cos

4𝜋

7
0 − 3

for n=0

= −0.0792

ℎ 1 =
2

7
2 cos

2𝜋

7
1 − 3 + 2 cos

4𝜋

7
1 − 3

for n=1

= −0.321

ℎ 2 =
2

7
2 cos

2𝜋

7
2 − 3 + 2 cos

4𝜋

7
2 − 3

for n=2

= 0.1145

ℎ 3 =
2

7
2 cos

2𝜋

7
3 − 3 + 2 cos

4𝜋

7
3 − 3

for n=3

= 0.571

for n=4

ℎ 4 = ℎ 7 − 1 − 4 = ℎ 2 = 0.1145

for n=5

ℎ 5 = ℎ 7 − 1 − 5 = ℎ 1 = −0.321

for n=6

ℎ 6 = ℎ 7 − 1 − 6 = ℎ 0 = −0.0792
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Design of linear phase FIR filter by frequency sampling technique

Step 4: Take Z-Transform of impulse response h(n) to get filter transfer function H(z)

𝐻 𝑍 = ෍

𝑛=0

6

ℎ 𝑛 𝑍−𝑛

= ℎ 0 𝑍0 + ℎ 1 𝑍−1 + ℎ 2 𝑍−2 + ℎ 3 𝑍−3 + ℎ 4 𝑍−4 + ℎ 5 𝑍−5 + ℎ 6 𝑍−6

𝐻 𝑍 = −0.0792 1 + 𝑍−6 − 0.321 𝑍−1 + 𝑍−5 + 0.1145 𝑍−2 + 𝑍−4 + 0.571𝑍−3

ℎ 3 = 0.571

ℎ 4 = ℎ 7 − 1 − 4 = ℎ 2 = 0.1145

ℎ 5 = ℎ 7 − 1 − 5 = ℎ 1 = −0.321

ℎ 6 = ℎ 7 − 1 − 6 = ℎ 0 = −0.0792
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Infinite Impulse Response (IIR) Filters

• The FIR filters are non recursive type filters(present input depends on the present and previous inputs)
where as IIR filters are recursive type (present input depends on the present, past and output samples)

• IIR (infinite impulse response) filters are generally chosen for applications where linear phase is not
too important and memory is limited.

• They have been widely deployed in audio equalization, biomedical sensor signal processing, IoT/IIoT
smart sensors and high-speed telecommunication/RF applications

• IIR filter have infinite-duration impulse responses, hence they can be matched to analog filters, all of
which generally have infinitely long impulse responses.

• The basic techniques of IIR filter design transform well-known analog filters into digital filters using
complex-valued mappings.

• First we design an antilog prototype filter and then transform the prototype to a digital filter, hence it is
also called indirect method

YouTube - IMPLearn 

www.iammanuprasad.com



• An IIR filter is categorized by its theoretically infinite impulse response, Practically speaking, it is not possible to
compute the output of an IIR using this equation. Therefore, the equation may be re-written in terms of a finite
number of poles p and zeros q, as defined by the linear constant coefficient difference equation

• where, a(k) and b(k) are the filter’s denominator and numerator polynomial coefficients, who’s roots are equal to
the filter’s poles and zeros respectively. Thus, a relationship between the difference equation and the z-transform
(transfer function) may therefore be defined by using the z-transform delay property such that,

• As seen, the transfer function is a frequency domain representation of the filter.

• Notice also that the poles act on the output data, and the zeros on the input data.

• Since the poles act on the output data, and affect stability, it is essential that their radii remain inside the unit circle
(i.e. <1) for BIBO (bounded input, bounded output) stability. The radii of the zeros are less critical, as they do not
affect filter stability.

𝑦 𝑛 = ෍

𝑘=0

𝑞

𝑏𝑘𝑥 𝑛 − 𝑘 −෍

𝑙=1

𝑝

𝑎𝑘𝑦 𝑛 − 𝑘

𝐻 𝑧 = ෍

𝑛=0

∞

𝑦 𝑛 𝑍−𝑛 =
σ𝑘=0
𝑞

𝑏𝑘𝑍
−𝑘

1 + σ
𝑘=1
𝑝

𝑎𝑘𝑍
−𝑘

Infinite Impulse Response (IIR) Filters
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Specifications for magnitude response of lowpass filter

AnalogDigital Alternate specifications of lowpass filter

𝜔𝑝 → Passband frequency (rad/samples)

𝜔𝑠 → Stopband frequency (rad/samples)

𝜔𝑐 → 3dB cut off frequency (rad/samples)

ε → Passband parameter

λ → Stopband parameter

Ω𝑝 → Passband frequency (rad/sec)

Ω𝑠 → Stopband frequency (rad/sec)

Ω𝑐 → 3dB cut off frequency (rad/sec)

𝛿𝑝 → Passband error tolerance 

𝛿𝑠 → max allowable magnitude in stop band

ε =
2 𝛿𝑝

1 − 𝛿𝑝

λ =
1 + 𝛿𝑝

2
− 𝛿𝑠

2

𝛿𝑠
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Design of steps of IIR Filters

1. Map the desired digital filter specifications into those for an equivalent analog
filter

2. Derive the analog transfer function for the analog prototype

3. Transform the transfer function of the analog prototype into an equivalent digital
filter transfer function
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Analog lowpass filter design

Mainly there are two types of analog filter designs

1. Butterworth Filter

2. Chebyshev filter

Analog low pass Butterworth Filter

𝐻 𝑗Ω =
1

1 +
Ω
Ω𝑐

2𝑁
1
2

Where N is the order of the
filter

Properties of Butterworth filters

1. Butterworth filters are all pole design

2. The magnitude of normalised Butterworth filter is 1/√2 at cut off frequency Ω𝑐

3. The filter order specified the filter

4. Magnitude is maximally flat at the origin

5. As N increases the response approaches to ideal response

The magnitude function of the lowpass Butterworth filter is
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Analog low pass Butterworth Filter

Order Normalised transfer function

1 1

𝑠 + 1

2 1

𝑠2 + √2𝑠 + 1

3 1

𝑠 + 1 𝑠2 + 𝑠 + 1

4 1

𝑠2 + 0.765𝑠 + 1 𝑠2 + 1.848𝑠 + 1

5 1

𝑠 + 1 𝑠2 + 0.618𝑠 + 1 𝑠2 + 1.618𝑠 + 1

6 1

𝑠2 + 1.931𝑠 + 1 𝑠2 + 2𝑠 + 1 𝑠2 + 0.517𝑠 + 1
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Order of the Butterworth filter

ε → Passband parameter

λ → Stopband parameter

Ω𝑝 → Passband frequency (rad/sec)

Ω𝑠 → Stopband frequency (rad/sec)

𝛼𝑝 → Passband attenuation

𝛼𝑠 → Stopband attenuation

𝐻 𝑗Ω =
1

1 + ε2
Ω
Ω𝑝

2𝑁
1
2

Let the maximum passband attenuation in positive dB is 𝛼𝑝 (<3dB) at passband

frequency Ω𝑝 and 𝛼𝑠 is the minimum stopband attenuation at stopband frequency Ω𝑠 . The

magnitude function can be written as

𝐻 𝑗Ω 2 =
1

1 + ε2
Ω
Ω𝑝

2𝑁

Taking log on both sides

20 log𝐻 𝑗Ω = 10 log 1 − 10 log 1 + ε2
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Order of the Butterworth filter

0.1𝛼𝑝 = log 1 + ε2

Taking antilog on both sides

100.1𝛼𝑝 = 1 + ε2

ε2 = 100.1𝛼𝑝 − 1

ε = 100.1𝛼𝑝 − 1
1
2

At Ω = Ω𝑠 , 20 log𝐻 𝑗Ω = −𝛼𝑠At Ω = Ω𝑝 , 20 log𝐻 𝑗Ω = −𝛼𝑝

𝛼𝑝 = 10 log 1 + ε2
𝛼𝑠 = 10 log 1 + ε2

Ω𝑠
Ω𝑝

2𝑁

Taking antilog on both sides

100.1𝛼𝑠 − 1 = ε2
Ω𝑠
Ω𝑝

2𝑁

Ω𝑠
Ω𝑝

2𝑁

=
100.1𝛼𝑠 − 1

ε2

Ω𝑠
Ω𝑝

2𝑁

=
100.1𝛼𝑠 − 1

100.1𝛼𝑝 − 1

Taking log on both sides and
finding the value of N

𝑁 ≥
log

100.1𝛼𝑠 − 1

100.1𝛼𝑝 − 1

log
Ω𝑠
Ω𝑝

𝑁 ≥
log

λ
ε

log
Ω𝑠
Ω𝑝

or
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Steps to design an analog Butterworth filter

1. Find the order of the filter N &round off to higher integer

2. Find the transfer function H(s) for Ωc=1 rad/sec for the values of N

3. Calculate value of cut-off frequency Ωc

4. Find transfer function Ha(s) for the value of Ωc calculated by substituting

𝑠 =
𝑠

Ωc
in H(s)
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Q) For given specifications design an analog Butterworth filter

0.9 ≤ 𝐻 𝑗Ω ≤ 1 𝑓𝑜𝑟 0 ≤ Ω ≤ 0.2𝜋

𝐻 𝑗Ω ≤ 0.2 𝑓𝑜𝑟 0.4𝜋 ≤ Ω ≤ 𝜋

Design an analog Butterworth filter

Solution

1

1 + ε2
= 0.9Ω𝑝 = 0.2𝜋

Ω𝑠 = 0.4𝜋
1

1 + λ2
= 0.2

ε = 0.484

λ = 4.898

Step 1: Find the order of the filter N & round off to higher

integer

𝑁 ≥
log

λ
ε

log
Ω𝑠
Ω𝑝

≥
log

4.898
0.484

log
0.4𝜋
0.2𝜋

= 3.34 𝑁 ≈ 4
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Design an analog Butterworth filter

Step 2: Find the transfer function H(s) for Ωc=1 rad/sec for the values of N

𝐻 𝑆𝑛 =
1

𝑠2 + 0.765𝑠 + 1 𝑠2 + 1.848𝑠 + 1

Step 3: Calculate value of cut-off frequency Ωc

Ω𝑐 =
Ω𝑝

100.1𝛼𝑝 − 1
1
2𝑁

=
0.2𝜋

ε
1
4

= 0.24𝜋

ε = 100.1𝛼𝑝 − 1
1
2
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Step 4: Find transfer function H(s) for the value of Ωc calculated by substituting 𝑠 =
𝑠

Ωc
in H(s)

𝐻 𝑠 =
1

𝑠
0.24𝜋

2
+ 0.765

𝑠
0.24𝜋

+ 1
𝑠

0.24𝜋

2
+ 1.848

𝑠
0.24𝜋

+ 1

𝐻 𝑠 =
0.323

𝑠2 + 0.577𝑠 + 0.057𝜋2 𝑠2 + 1.39𝑠 + 0.0576𝜋2

Design an analog Butterworth filter

𝐻 𝑆𝑛 =
1

𝑠2 + 0.765𝑠 + 1 𝑠2 + 1.848𝑠 + 1
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Q) Design an analog Butterworth filter that has a -2dB passband
attenuation at a frequency of 20 rad/sec and at least -10dB stopband
attenuation at 30 rad/sec

Design an analog Butterworth filter

Solution

𝛼𝑝 = 2𝑑𝐵
Ω𝑝 = 20 𝑟𝑎𝑑/𝑠𝑒𝑐

Ω𝑠 = 30 𝑟𝑎𝑑/𝑠𝑒𝑐 𝛼𝑠 = 10𝑑𝐵

Step 1: Find the order of the filter N & round off to higher

integer

𝑁 ≥
log

100.1𝛼𝑠 − 1

100.1𝛼𝑝 − 1

log
Ω𝑠
Ω𝑝

≥
log

100.1∗10 − 1
100.1∗2 − 1

log
30
20

= 3.37 𝑁 ≈ 4
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Design an analog Butterworth filter

Step 2: Find the transfer function H(s) for Ωc=1 rad/sec for the values of N

𝐻 𝑆𝑛 =
1

𝑠2 + 0.765𝑠 + 1 𝑠2 + 1.848𝑠 + 1

Step 3: Calculate value of cut-off frequency Ωc

Ω𝑐 =
Ω𝑝

100.1𝛼𝑝 − 1
1
2𝑁

=
20

100.1∗2 − 1
1
2∗4

= 21.386
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Step 4: Find transfer function Ha(s) for the value of Ωc calculated by substituting 𝑠 =
𝑠

Ωc
in H(s)

𝐻 𝑆𝑛 =
1

𝑠
21.386

2
+ 0.765

𝑠
21.386

+ 1
𝑠

21.386

2
+ 1.848

𝑠
21.386

+ 1

𝐻 𝑆𝑛 =
0.20921 × 106

𝑠2 + 16.368𝑠 + 457.39 𝑠2 + 39.51𝑠 + 457.394

Design an analog Butterworth filter
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Design digital filter from analog filter

Digital filter from 
analog filter

Impulse invariant 
method

Bilinear transformation
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Design of IIR filter using Impulse invariant method

• Here we require that the impulse response of the discrete system (digital filter) be the 

discrete version of the impulse response of the analogue system (filter)

• Hence the name impulse invariant

• In impulse invariant method the IIR filter is designed such that the unit impulse 

response h(n) of digital filter is the sampled version of impulse response of analog filter

𝐻 𝑍 = ෍

𝑛=0

𝑁

ℎ 𝑛 𝑍−𝑛

Z transform

For impulse invariant method we do the mapping as  

𝐻 𝑍 |𝑧=𝑒𝑠𝑇 = ෍

𝑛=0

𝑁

ℎ 𝑛 𝑒−𝑠𝑇𝑛

𝑆 = 𝜎 + 𝑗Ω 𝑍 = 𝑟𝑒𝑗𝜔

𝑟𝑒𝑗𝜔 = 𝑒 𝜎+𝑗Ω 𝑇

Equating real and imaginary parts

𝑟 = 𝑒𝜎𝑇 𝜔 = ΩT

Real part of analog 

pole =radius of Z-

plane pole

Imaginary part of 

analog pole = angle 

of digital pole
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Case 1 : 

𝑗Ω

𝜎

S-Plane

𝐼𝑚 𝑧

𝑅𝑒 𝑧

Z - Plane

𝜎 = 0

𝑟 = 𝑒0𝑇 = 1

Impulse invariant mapping map poles from s-plane’s 

𝑗Ω axis to Z-plane’s unit circle  

YouTube - IMPLearn 

www.iammanuprasad.com



Case 2 : 

𝑗Ω

𝜎

S-Plane

𝐼𝑚 𝑧

𝑅𝑒 𝑧

Z - Plane

𝜎 < 0 (𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑆 − 𝑝𝑙𝑎𝑛𝑒)

𝑟 = 𝑒𝜎𝑇 < 1

All S-plane poles with –ve real parts map to Z–plane 

poles inside unit circle
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Case 3 : 

𝑗Ω

𝜎

S-Plane

𝐼𝑚 𝑧

𝑅𝑒 𝑧

Z - Plane

𝜎 > 0 (𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑆 − 𝑝𝑙𝑎𝑛𝑒)

𝑟 = 𝑒𝜎𝑇 > 1

Poles in right half of S-plane map to digital poles 

outside unit circle
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Let Ha(s) is the system function of analog filter

𝐻𝑎 𝑠 = ෍

𝑘=1

𝑁
𝐶𝑘

𝑆 − 𝑃𝑘

𝑃𝑘 → 𝑃𝑜𝑙𝑒𝑠 𝑜𝑓 𝑎𝑛𝑎𝑙𝑜𝑔 𝑓𝑖𝑙𝑡𝑒𝑟

𝐶𝑘 → 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

Taking inverse Laplace transform

ℎ𝑎 𝑡 = ෍

𝑘=1

𝑁

𝐶𝑘𝑒
𝑃𝑘𝑡

𝐿
1

𝑠 − 𝑎
= 𝑒𝑎𝑡

Sample ha(t) at t=nT

ℎ 𝑛 = ℎ 𝑛𝑇 = ෍

𝑘=1

𝑁

𝐶𝑘𝑒
𝑃𝑘𝑛𝑇

Now taking Z - Transform

𝐻 𝑧 = ෍

𝑛=0

∞

ℎ 𝑛 𝑧−𝑛

𝐻 𝑧 = ෍

𝑛=0

∞

෍

𝑘=1

𝑁

𝐶𝑘𝑒
𝑃𝑘𝑛𝑇 𝑧−𝑛

= ෍

𝑘=1

𝑁

𝐶𝑘 ෍

𝑛=0

∞

𝑒𝑃𝑘𝑇𝑧−1 𝑛

𝐻 𝑧 = ෍

𝑘=1

𝑁
𝐶𝑘

1 − 𝑒𝑃𝑘𝑇𝑧−1
𝐻 𝑧 = ෍

𝑘=1

𝑁
𝐶𝑘

1 − 𝑒𝑃𝑘𝑇𝑧−1

𝐻𝑎 𝑠 = ෍

𝑘=1

𝑁
𝐶𝑘

𝑆 − 𝑃𝑘
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Steps to design IIR filter using 

Impulse invariant method

1. For the given specification find Ha(s), the transfer function of analog filter

2. Select the sampling rate of the digital filter, T seconds/sample

3. Express the analog filter transfer function as the sum of single pole filters

4. Compute the Z transform of the digital filter by using the formula

𝐻𝑎 𝑠 = ෍

𝑘=1

𝑁
𝐶𝑘

𝑆 − 𝑃𝑘

𝐻 𝑧 = ෍

𝑘=1

𝑁
𝐶𝑘

1 − 𝑒𝑃𝑘𝑇𝑧−1

𝐻 𝑧 = ෍

𝑘=1

𝑁
𝑇𝐶𝑘

1 − 𝑒𝑃𝑘𝑇𝑧−1
for T < 1
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Q) For the analog transfer function 𝐻 𝑠 =
2

𝑠+1 (𝑠+2)
Determine H(z) using impulse invariance method. Assume T=1sec

Design of IIR filter by impulse invariant technique

Solution

𝐻 𝑠 =
2

𝑠 + 1 (𝑠 + 2)

Using partial fraction method

𝐻 𝑠 =
𝐴

𝑠 + 1
+

𝐵

(𝑠 + 2)

2 = 𝐴(𝑠 + 2) + 𝐵 𝑠 + 1

At s = -1

𝐴 = 2

At s = -2

𝐵 = −2

𝐻 𝑠 =
2

𝑠 + 1
−

2

(𝑠 + 2)

𝐻 𝑠 =
2

𝑠 − −1
−

2

(𝑠 − −2 )

For T=1 sec

2

𝑠 − −1
=

2

1 − 𝑒−1𝑧−1

2

𝑠 − −2
=

2

1 − 𝑒−2𝑧−1

𝐻 𝑧 =
2

1 − 𝑒−1𝑧−1
−

2

1 − 𝑒−2𝑧−1

𝐻 𝑧 =
0.465𝑧−1

1 − 0.503𝑧−1 + 0.0497𝑧−2
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Q) An anlog filter has a transfer function 𝐻 𝑠 =
10

𝑠2+7𝑠+10
Design a digital filter equivalent to this using impulse

invariant method for T=0.2 sec

Design of IIR filter by impulse invariant technique

Solution

𝐻 𝑠 =
10

𝑠2 + 7𝑠 + 10

Using partial fraction method

10

𝑠2 + 7𝑠 + 10
=

𝐴

𝑠 + 5
+

𝐵

(𝑠 + 2)

10 = 𝐴(𝑠 + 2) + 𝐵 𝑠 + 5

At s = -5

𝐴 = −3.33

At s = -2

𝐵 = 3.33

𝐻 𝑠 =
−3.33

𝑠 + 5
+

3.33

(𝑠 + 2)

𝐻 𝑠 =
−3.33

𝑠 − −5
+

3.33

(𝑠 − −2 )

For T=0.2 sec

−3.33

𝑠 − −5
=

−3.33

1 − 𝑒−5∗0.2𝑧−1

3.33

𝑠 − −2
=

3.33

1 − 𝑒−2∗02𝑧−1

𝐻 𝑧 =
0.2012𝑧−1

1 − 1.0378𝑧−1 + 0.247𝑧−2

𝐻 𝑧 =
−3.33

1 − 𝑒−1𝑧−1
−

3.33

1 − 𝑒−0.4𝑧−1
0.2
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Q) Apply impulse invariant method and find H(z) for 𝐻 𝑠 =
𝑠+𝑎

(𝑠+𝑎)2+𝑏2

Design of IIR filter by impulse invariant technique

Solution

𝐻 𝑠 =
𝑠 + 𝑎

(𝑠 + 𝑎)2+𝑏2

Inverse Laplace of the given function

𝑒𝑎𝑡 cos 𝑏𝑡 ֞
𝐿 𝑠 − 𝑎

𝑠 − 𝑎 2 + 𝑏2

ℎ 𝑡 = 𝑒−𝑎𝑡 cos 𝑏𝑡

For sampling the function substitute t=nT

ℎ 𝑛𝑇 = 𝑒−𝑎𝑛𝑇 cos 𝑏𝑛𝑇

Taking Z-transform

𝐻 𝑧 = ෍

𝑛=0

∞

𝑒−𝑎𝑛𝑇 cos 𝑏𝑛𝑇 𝑧−𝑛

𝐻 𝑧 = ෍

𝑛=0

∞

𝑒−𝑎𝑛𝑇𝑧−𝑛
𝑒𝑗𝑏𝑛𝑇 + 𝑒−𝑗𝑏𝑛𝑇

2

=
1

2
෍

𝑛=0

∞

𝑒−𝑎𝑇𝑒𝑗𝑏𝑇𝑧−1
𝑛
+ 𝑒−𝑎𝑇𝑒−𝑗𝑏𝑇𝑧−1

𝑛

=
1

2
෍

𝑛=0

∞

𝑒−(𝑎−𝑗𝑏)𝑇𝑧−1
𝑛
+ 𝑒−(𝑎+𝑗𝑏)𝑇𝑧−1

𝑛

෍

𝑛=0

∞

𝑎𝑛 ֞
1

1 − 𝑎
𝐻 𝑧 =

1

2

1

1 − 𝑒− 𝑎−𝑗𝑏 𝑇𝑧−1
+

1

1 − 𝑒− 𝑎+𝑗𝑏 𝑇𝑧−1

𝐻 𝑧 =
1 − 𝑒−𝑎𝑇 cos 𝑏𝑇 𝑧−1

1 − 2𝑒−𝑎𝑇 cos 𝑏𝑇 𝑧−1 + 𝑒−2𝑎𝑇𝑧−2
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Steps to design IIR filter using

Bilinear transformation method

1. From the given specifications find pre-warping analog frequency
using formula

2. Using the analog frequency find H(s) of the analog filter

3. Select the sampling rate of the digital filter, call it T seconds per
sample

4. Substitute 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1
into the transfer function found in step 2

Ω =
2

𝑇
tan

𝜔

2

The basis operation is to convert an analogue filter H(s) into an equivalent 

digital filter H(z) by using bilinear approximation 
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Q) Apply bilinear transformation to 𝐻 𝑠 =
2

𝑠+1 + 𝑠+2

Design of IIR filter by impulse invariant technique

Solution

𝐻 𝑠 =
2

𝑠 + 1 + 𝑠 + 2

Substitute 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1
at T=1sec

𝐻 𝑧 =
2

2
1 − 𝑧−1

1 + 𝑧−1
+ 1 + 2

1 − 𝑧−1

1 + 𝑧−1
+ 2

=
2

2
1 − 𝑧−1 + 1 + 𝑧−1

1 + 𝑧−1
+ 2

1 − 𝑧−1

1 + 𝑧−1
+ 2

=
2 1 + 𝑧−1 2

2 − 2𝑧−1 + 1 + 𝑧−1 + 2 − 2𝑧−1 + 2 + 2𝑧−1

=
1 + 𝑧−1 2

3 − 𝑧−1 2

𝐻 𝑧 =
1 + 𝑧−1

1 − 0.33𝑧−1
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Q) Design a digital analog Butterworth filter satisfying the constraints

0.707 ≤ 𝐻 𝑗𝜔 ≤ 1 𝑓𝑜𝑟 0 ≤ 𝜔 ≤
𝜋

2

𝐻 𝑗𝜔 ≤ 0.2 𝑓𝑜𝑟
3𝜋

4
≤ 𝜔 ≤ 𝜋

using bilinear transformation. Take T=1sec

Design an analog Butterworth filter

Solution

ε = 1
1

1 + ε2
= 0.707

1

1 + λ2
= 0.2 λ = 4.89

𝜔𝑝 =
𝜋

2

𝜔𝑠 =
3𝜋

4

Step 1: Step 1: From the given specifications find pre-warping

analog frequency using formula Ω =
2

𝑇
tan

𝜔

2

Ω𝑠 =
2

𝑇
tan

𝜔𝑠
2

Ω𝑠 =
2

1
tan

3𝜋
4
2

Ω𝑠 = 2 tan
3𝜋

8

Ω𝑝 =
2

𝑇
tan

𝜔𝑝

2

Ω𝑝 =
2

1
tan

𝜋
2
2

Ω𝑝 = 2 tan
𝜋

4

Ω𝑠
Ω𝑝

=
2 tan

3𝜋
8

2 tan
𝜋
4

= 2.414
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Design an analog Butterworth filter

Step 2: Using the analog frequency find H(s) of the analog filter

𝑁 ≥
log

λ
ε

log
Ω𝑠
Ω𝑝

𝐻𝑎 𝑠 =
1

𝑠2 + √2𝑠 + 1

≥
log

4.89
1

log 2.414
≥ 1.80

𝑁 = 2

Ω𝑐 =
Ω𝑝

ε
1
𝑁

=
2 tan

𝜋
4

1
1
2

= 2 𝑟𝑎𝑑/𝑠𝑒𝑐

To find H(s) substitute 𝑠 =
𝑠

Ω𝑐

𝐻 𝑠 =
1

𝑠
4

2
+ √2

𝑠
2
+ 1

𝐻 𝑠 =
4

𝑠2 + 2.828𝑠 + 4
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Design an analog Butterworth filter

𝐻 𝑠 =
1

𝑠2 + 2.828𝑠 + 4

Step 4: Substitute 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1
into the transfer function

=
1

2
1 − 𝑧−1

1 + 𝑧−1

2

+ 2.828 2
1 − 𝑧−1

1 + 𝑧−1
+ 4

𝐻 𝑠 =
4 1 + 𝑧−1

4 1 − 𝑧−1 + 5.656 1 − 𝑧−2 + 4 1 + 𝑧−1
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• A digital filter transfer function can be realized in a variety ways

• Realization of FIR filters

• Realization of IIR filters

• Basic elements required for implementation of an LTI digital system are adder , multiplier and
memory for storing elements

• In digital implementation the delay operation can be implemented by providing a storage register by
each unit delay is required

Realisation of discrete time system

𝒙𝟏 𝒏

𝒙𝟐 𝒏

𝒙𝟏 𝒏 + 𝒙𝟐 𝒏

Adder

𝒂
𝒙 𝒏 𝒂𝒙 𝒏

Multiplier

Z-1

𝒙 𝒏 𝒙 𝒏 − 𝟏

Unit delay
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FIR filter realization

• Mainly four types of realisation are there

1. Direct form realisation

2. Cascade form realisation

3. Linear phase realisation

4. Lattice structure realisation
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Direct form realization

The direct form of FIR may be obtained by using the equation of linear convolution

𝑦 𝑘 = ෍

𝑘=0

𝑁−1

ℎ 𝑘 𝑥 𝑛 − 𝑘 = ℎ 0 𝑥 𝑛 + ℎ 1 𝑥 𝑛 − 1 +⋯+ ℎ 𝑁 − 1 𝑥 𝑛 − 𝑁 − 1

Taking Z-transform

𝑌 𝑧 = ℎ 0 𝑋 𝑧 + ℎ 1 𝑋 𝑧 𝑧−1 +⋯+ ℎ 𝑁 − 1 𝑋 𝑧 𝑧− 𝑁−1

Z-1

𝑿 𝒛

𝒀 𝒛

Z-1 Z-1 Z-1

𝒉 𝟎 𝒉 𝟏 𝒉 𝟐 𝒉 𝑵 − 𝟐 𝒉 𝑵 − 𝟏
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Q) Determine the direct form realization of system function
𝐻 𝑧 = 1 + 2𝑧−1 − 3𝑧−2 − 4𝑧−3 + 5𝑧−4

𝐻 𝑧 = 1 + 2𝑧−1 − 3𝑧−2 − 4𝑧−3 + 5𝑧−4
𝐻 𝑧 =

𝑌 𝑧

𝑋 𝑧

𝑌 𝑧 = 𝑋 𝑧 1 + 2𝑧−1 − 3𝑧−2 − 4𝑧−3 + 5𝑧−4

Z-1

𝑿 𝒛

𝒀 𝒛

Z-1 Z-1 Z-1

𝟏 𝟐 −𝟑 −𝟒 𝟓
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Q) Obtain cascade form realization of system function 𝐻 𝑧 = 1 + 2𝑧−1 − 𝑧−2 1 + 𝑧−1 − 𝑧−2

𝐻 𝑧 = 𝐻1 𝑧 𝐻2 𝑧

𝑌1 𝑧 = 𝑋1 𝑧 1 + 2𝑧−1 − 𝑧−2

Cascade form realization

𝐻1 𝑧 =
𝑌1 𝑧

𝑋1 𝑧

𝐻2 𝑧 =
𝑌2 𝑧

𝑋2 𝑧

𝑌1 𝑧 = 𝑋1 𝑧 + 2𝑋 𝑧 𝑧−1 − 𝑋 𝑧 𝑧−2

𝑌2 𝑧 = 𝑋2 𝑧 1 + 𝑧−1 − 𝑧−2

𝑌2 𝑧 = 𝑋2 𝑧 + 𝑋2 𝑧 𝑧
−1 − 𝑋2 𝑧 𝑧

−2

𝑿𝟏 𝒛

Z-1

Z-1

𝒀 𝒛

Z-1

Z-1

𝟐

−𝟏

𝒀𝟏 𝒛

𝟏

−𝟏

𝑿𝟐 𝒛
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Cascade form realization

Q) Obtain cascade form realization of system function 𝐻 𝑧 = 1 +
5

2
𝑧−1 + 2𝑧−2 + 2𝑧−3

𝐻 𝑧 = 1 +
5

2
𝑧−1 + 2𝑧−2 + 2𝑧−3

=
𝑧3

𝑧3
1 +

5

2
𝑧−1 + 2𝑧−2 + 2𝑧−3

=
1

𝑧3
𝑧3 +

5

2
𝑧2 + 2𝑧1 + 2

The term inside the bracket equal to zero when z=-2

So the first term can be (z+2)

=
1

𝑧3
𝑧 + 2 𝑧2 +

1

2
𝑧 + 1

=
1

𝑧3
𝑧 1 + 2𝑧−1 𝑧2 1 +

1

2
𝑧−1 + 𝑧−2

Z-1

𝟐

𝑿 𝒛

Z-1

Z-1

𝟏

𝟐

𝟏

𝒀 𝒛
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Linear phase realization

Q) Realise the system function 𝐻 𝑧 =
1

2
+

1

3
𝑧−1 + 𝑧−2 +

1

4
𝑧−3 + 𝑧−4 +

1

3
𝑧−5 +

1

2
𝑧−6

For a linear phase FIR filter ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

ℎ 0 = ℎ 7 − 1 − 0

𝑁 = 7

ℎ 0 ℎ 1 𝒉 𝟐 𝒉 𝟑 𝒉 𝟒 𝒉 𝟓 𝒉 𝟔

= ℎ 6

ℎ 1 = ℎ 7 − 1 − 1 = ℎ 5

ℎ 2 = ℎ 7 − 1 − 2 = ℎ 4

ℎ 3 = ℎ 7 − 1 − 3 = ℎ 3

=
1

2

=
1

3

= 1

=
1

4

𝐻 𝑧

=
1

2
1 + 𝑧−6 +

1

3
𝑧−1 + 𝑧−5

+ 1. 𝑧−2 + 𝑧−4 +
1

4
𝑧−3

Z-1 Z-1 Z-1

Z-1 Z-1 Z-1

𝑿 𝒛

𝒀 𝒛

𝟏

𝟐

𝟏

𝟑

𝟏

𝟏

𝟒
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Linear phase realization

Q) Realise the system function using minimum number of multiplier

𝐻 𝑧 = 1 +
1

3
𝑧−1 +

1

4
𝑧−2 +

1

4
𝑧−3 +

1

3
𝑧−4 + 𝑧−5

For a linear phase FIR filter ℎ 𝑛 = ℎ 𝑁 − 1 − 𝑛

ℎ 0 = ℎ 6 − 1 − 0

𝑁 = 6

ℎ 0 ℎ 1 𝒉 𝟐 𝒉 𝟑 𝒉 𝟒 𝒉 𝟓

= ℎ 5

ℎ 1 = ℎ 6 − 1 − 1 = ℎ 4

ℎ 2 = ℎ 6 − 1 − 2 = ℎ 3

= 1

=
1

3

=
1

4

𝐻 𝑧

= 1 1 + 𝑧−5 +
1

3
𝑧−1 + 𝑧−4

+
1

4
𝑧−2 + 𝑧−3

Z-1 Z-1

Z-1 Z-1

𝑿 𝒛

𝒀 𝒛

𝟏

𝟑

𝟏

𝟒

Z-1
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Linear phase realization

Q) Realise the system function using minimum number of multiplier

𝐻 𝑧 = 1 + 𝑧−1 1 +
1

2
𝑧−1 +

1

2
𝑧−2 + 𝑧−3

Z-1

𝑿 𝒛 Z-1

Z-1

Z-1

𝒀 𝒛
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The general equation

Conversion of lattice coefficient to direct form filter coefficient

𝛼𝑚 0 = 1

𝛼𝑚 𝑚 = 𝐾𝑚

𝛼𝑚 𝑘 = 𝛼𝑚−1 𝑘 + 𝛼𝑚 𝑚 𝛼𝑚−1 𝑚 − 𝑘

The equations to convert filter coefficients to direct form FIR filter coefficients are

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

𝑚

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘
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Q) Consider an FIR filter lattice filter with coefficient K1 = ½ ,K2 = 1/3 , K3 = ¼. Determine the
FIR filter coefficients for direct form structure?

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

𝑚

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

3

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘

Number of stages (m) = 3

Solution

= 𝑥 𝑛 + 𝛼3 1 𝑥 𝑛 − 1 + 𝛼3 2 𝑥 𝑛 − 2 + 𝛼3 3 𝑥 𝑛 − 3

𝛼3 0 = 1

𝛼3 3 =
1

4

For m=3

𝛼2 0 = 1

𝛼2 2 =
1

3

For m=2

𝛼1 0 = 1

𝛼1 1 =
1

2

For m=1

𝛼3 2
= 𝛼2 2 + 𝛼3 3 𝛼2 1

and k=2

=
1

3
+
1

4
𝛼2 1

and k=1

𝛼2 1
= 𝛼1 1 + 𝛼2 2 𝛼1 1

=
1

2
+
1

3
.
1

2
=
2

3
=
1

2

For m=3 and k=1

𝛼3 1 = 𝛼2 1 + 𝛼3 3 𝛼2 2

=
2

3
+
1

4
.
1

3
=
3

4
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The general equation

Conversion of direct form FIR filter coefficient to lattice coefficient 

𝛼𝑚−1 0 = 1

𝐾𝑚 = 𝛼𝑚 𝑚

𝛼𝑚−1 𝑘 =
𝛼𝑚 𝑘 − 𝛼𝑚 𝑚 𝛼𝑚 𝑚− 𝑘

1 − 𝛼𝑚
2 𝑚

𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑚 − 1

The equations to convert filter coefficients to lattice form FIR filter coefficients are

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

𝑚

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘

YouTube - IMPLearn 

www.iammanuprasad.com



A FIR filter is given by the difference equation 𝑦 𝑛 = 2𝑥 𝑛 +
4

5
𝑥 𝑛 − 1 +

3

2
𝑥 𝑛 − 2 +

2

3
𝑥 𝑛 − 3 Determine

its lattice form

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

𝑚

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘

Solution

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

3

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘

= 𝑥 𝑛 + 𝛼3 1 𝑥 𝑛 − 1 + 𝛼3 2 𝑥 𝑛 − 2 + 𝛼3 3 𝑥 𝑛 − 3

𝑦 𝑛 = 2 𝑥 𝑛 +
2

5
𝑥 𝑛 − 1 +

3

4
𝑥 𝑛 − 2 +

1

3
𝑥 𝑛 − 3

Comparing the two equations we get

𝛼3 1 =
2

5
𝛼3 2 =

3

4
𝛼3 3 =

1

3
= 𝑘3

𝛼2 0 = 1
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For m=3, k=2

𝑘2 = 𝛼2 2 =
𝛼3 2 − 𝛼3 3 𝛼3 1

1 − 𝛼2
2 3

𝑦 𝑛 = 𝑥 𝑛 +෍

𝑘=1

𝑚

𝛼𝑚 𝑘 𝑥 𝑛 − 𝑘

=

3
4
−
1
3
.
2
5

1 −
1
3

2

𝛼3 1 =
2

5
𝛼3 2 =

3

4
𝛼3 3 =

1

3
= 𝑘3 𝛼2 0 = 1

= 0.6937

For m=3, k=1

𝛼2 1 =
𝛼3 1 − 𝛼3 3 𝛼3 2

1 − 𝛼3
2 3

=

2
5
−
1
3
.
3
4

1 −
1
3

2 = 0.1687

For m=2, k=1

𝑘1 = 𝛼1 1 =
𝛼2 1 − 𝛼2 2 𝛼2 1

1 − 𝛼2
2 2

=
0.1687 − (0.6937)0.1687

1 − 0.6937 2

= 0.0996
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IIR filter Realisation 

• Mainly four types of realisation are there

1. Direct form I realisation

2. Direct form II realisation

3. Cascade form realisation

4. Parallel form realisation
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Direct form I realization

Let us consider an IIR system described by the difference equation

𝑦 𝑛 = −෍

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 +෍

𝑘=0

𝑀

𝑏𝑘𝑥 𝑛 − 𝑘

= −𝑎1𝑦 𝑛 − 1 − 𝑎2𝑦 𝑛 − 2 …
− 𝑎𝑁𝑦 𝑛 − 𝑁 + 𝑤 𝑛

Where

𝑤 𝑛
= 𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 𝑁 +⋯
+ 𝑏𝑀𝑥 𝑛 −𝑀

𝒙 𝒏

Z-1

Z-1

Z-1

𝒙 𝒏 − 𝟏

𝒙 𝒏 −𝑴

𝒃𝟎

𝒃𝟏

𝒃𝑴

𝒃𝑴−𝟏

Z-1

Z-1

Z-1

𝒘 𝒏

−𝒂𝟏

−𝒂𝑵−𝟏

−𝒂𝑵

𝒚 𝒏

𝒚 𝒏 − 𝟏

𝒚 𝒏 −𝑴
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Direct form I realization

Q) Realise the second order digital filter

𝑦 𝑛 = 2𝑟 cos𝜔0 𝑦 𝑛 − 1 − 𝑟2𝑦 𝑛 − 2 + 𝑥 𝑛 − 𝑟 cos𝜔0 𝑥 𝑛 − 1

𝑤 𝑛 = 𝑥 𝑛 − 𝑟 cos𝜔0 𝑥 𝑛 − 1 𝑦 𝑛 = 2𝑟 cos𝜔0 𝑦 𝑛 − 1 − 𝑟2𝑦 𝑛 − 2 + 𝑤 𝑛

Solution

𝒙 𝒏
𝒘 𝒏

𝒚 𝒏

Z-1

−𝑟 cos𝜔0

Z-1

Z-1

2𝑟 cos𝜔0

𝑟2
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Direct form I realization

Q) Obtain the direct form I realisation for the system described by difference equation
𝑦 𝑛 = 0.5𝑦 𝑛 − 1 − 0.25𝑦 𝑛 − 2 + 𝑥 𝑛 + 0.4𝑥 𝑛 − 1

𝑤 𝑛 = 𝑥 𝑛 + 0.4𝑥 𝑛 − 1 𝑦 𝑛 = 0.5𝑦 𝑛 − 1 − 0.25𝑦 𝑛 − 2 + 𝑤 𝑛

Solution

𝒙 𝒏
𝒘 𝒏

𝒚 𝒏

Z-1

0.4

Z-1

Z-1

0.5

−0.25
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Direct form II realization

Let us consider an IIR system described by the difference equation

𝑦 𝑛 = −෍

𝑘=1

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 +෍

𝑘=0

𝑀

𝑏𝑘𝑥 𝑛 − 𝑘

The system function can be represented as

𝐻 𝑧 =
σ𝑘=0
𝑀 𝑏𝑘𝑧

−𝑘

1 + σ𝑘=1
𝑁 𝑎𝑘𝑧

−𝑘

Let

𝑌 𝑧

𝑋 𝑧
=
𝑌 𝑧

𝑊 𝑧
.
𝑊 𝑧

𝑋 𝑧

𝑌 𝑧

𝑊 𝑧
= ෍

𝑘=0

𝑀

𝑏𝑘𝑧
−𝑘

𝑊 𝑧

𝑋 𝑧
=

1

1 + σ𝑘=1
𝑁 𝑎𝑘𝑧

−𝑘

𝑌 𝑧 = 𝑏0𝑊 𝑧 + 𝑏1𝑧
−1𝑊 𝑧 +⋯+ 𝑏𝑀𝑧

−𝑀𝑊 𝑧

where

𝑊 𝑧 + 𝑎1𝑧
−1𝑊 𝑧 + 𝑎2𝑧

−2𝑊 𝑧 …+ 𝑎𝑁𝑧
−𝑁𝑊 𝑧 = 𝑋 𝑧

𝑊 𝑧 = 𝑋 𝑧 − 𝑎1𝑧
−1𝑊 𝑧 − 𝑎2𝑧

−2𝑊 𝑧 …− 𝑎𝑁𝑧
−𝑁𝑊 𝑧

Taking inverse z transform we get

𝑤 𝑛 = 𝑥 𝑛 − 𝑎1𝑤 𝑛 − 1 − 𝑎2𝑤 𝑛 − 2 …− 𝑎𝑁𝑤 𝑛 − 𝑁

𝑦 𝑛 = 𝑏0𝑤 𝑛 + 𝑏1𝑤 𝑛 − 1 +⋯+ 𝑏𝑀𝑤 𝑛 −𝑀
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Direct form II realization

𝑤 𝑛 = 𝑥 𝑛 − 𝑎1𝑤 𝑛 − 1 − 𝑎2𝑤 𝑛 − 2 …− 𝑎𝑁𝑤 𝑛 − 𝑁

𝑦 𝑛 = 𝑏0𝑤 𝑛 + 𝑏1𝑤 𝑛 − 1 +⋯+ 𝑏𝑀𝑤 𝑛 −𝑀

𝒙 𝒏 𝒚 𝒏

Z-1

Z-1

Z-1

−𝒂𝟏

−𝒂𝑵

−𝒂𝑵−𝟏

𝒃𝟏

𝒃𝑴

𝒃𝑴−𝟏
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Direct form II realization

Q) Realise the second order digital filter using direct form II

𝑦 𝑛 = 2𝑟 cos𝜔0 𝑦 𝑛 − 1 − 𝑟2𝑦 𝑛 − 2 + 𝑥 𝑛 − 𝑟 cos𝜔0 𝑥 𝑛 − 1

𝑌 𝑧 = 2𝑟 cos𝜔0 𝑌 𝑧 𝑧−1 − 𝑟2𝑌 𝑧 𝑧−2 + 𝑋 𝑧 − 𝑟 cos𝜔0 𝑋 𝑧 𝑧−1

Solution

𝑌 𝑧

𝑋 𝑧
=
𝑌 𝑧

𝑊 𝑧
.
𝑊 𝑧

𝑋 𝑧

Taking Z - Transform

𝑌 𝑧 1 − 2𝑟 cos𝜔0 𝑧
−1 + 𝑟2𝑧−2 = 𝑋 𝑧 1 − 𝑟 cos𝜔0 𝑧

−1

𝑌 𝑧

𝑋 𝑧
=

1 − 𝑟 cos𝜔0 𝑧
−1

1 − 2𝑟 cos𝜔0 𝑧
−1 + 𝑟2𝑧−2

𝑌 𝑧

𝑊 𝑧
= 1 − 𝑟 cos𝜔0 𝑧

−1

𝑊 𝑧

𝑋 𝑧
=

1

1 − 2𝑟 cos𝜔0 𝑧
−1 + 𝑟2𝑧−2

𝑌 𝑧 = 𝑊 𝑧 1 − 𝑟 cos𝜔0 𝑧
−1

𝑊 𝑧 − 2𝑟 cos𝜔0𝑊 𝑧 𝑧−1 + 𝑟2𝑊 𝑧 𝑧−2 = 𝑋 𝑧

𝑊 𝑧 = 𝑋 𝑧 + 2𝑟 cos𝜔0 𝑧
−1𝑊 𝑧 − 𝑟2𝑧−2𝑊 𝑧

Inverse transform

𝑦 𝑛 = 𝑤 𝑛 − 𝑟 cos𝜔0𝑤 𝑛 − 1

Inverse transform

𝑤 𝑛 = 𝑥 𝑛 + 2𝑟 cos𝜔0 𝑥 𝑛 − 1 − 𝑟2𝑥 𝑛 − 2
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𝑦 𝑛 = 𝑤 𝑛 − 𝑟 cos𝜔0𝑤 𝑛 − 1 𝑧−1 𝑤 𝑛 = 𝑥 𝑛 + 2𝑟 cos𝜔0 𝑥 𝑛 − 1 − 𝑟2𝑥 𝑛 − 2

Direct form II realization

𝒙 𝒏 𝒚 𝒏

Z-1

Z-1

𝟐𝒓 𝒄𝒐𝒔𝝎𝟎

−𝒓𝟐

−𝒓 𝒄𝒐𝒔𝝎𝟎

𝒘 𝒏
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Direct form II realization

Q) Determine the direct form II realisation for the following system
𝑦 𝑛 = −0.1𝑦 𝑛 − 1 + 0.72𝑦 𝑛 − 2 + 0.7𝑥 𝑛 − 0.252𝑥 𝑛 − 1

𝑌 𝑧 = −0.1𝑌 𝑧 𝑧−1 + 0.72𝑌 𝑧 𝑧−2 + 0.7𝑋 𝑧 − 0.252𝑋 𝑧 𝑧−1

Solution

𝑌 𝑧

𝑋 𝑧
=
𝑌 𝑧

𝑊 𝑧
.
𝑊 𝑧

𝑋 𝑧

Taking Z - Transform

𝑌 𝑧 1 + 0.1𝑧−1 − 0.72𝑧−2 = 𝑋 𝑧 0.7 − 0.252𝑧−1

𝑌 𝑧

𝑋 𝑧
=

0.7 − 0.252𝑧−1

1 + 0.1𝑧−1 − 0.72𝑧−2

𝑌 𝑧

𝑊 𝑧
= 0.7 − 0.252𝑧−1

𝑊 𝑧

𝑋 𝑧
=

1

1 + 0.1𝑧−1 − 0.72𝑧−2

𝑌 𝑧 = 𝑊 𝑧 0.7 − 0.252𝑧−1
𝑊 𝑧 + 0.1𝑊 𝑧 𝑧−1 − 0.72𝑊 𝑧 𝑧−2 = 𝑋 𝑧

𝑊 𝑧 = 𝑋 𝑧 − 0.1𝑊 𝑧 𝑧−1 + 0.72𝑊 𝑧 𝑧−2
Inverse transform

𝑦 𝑛 = 0.7𝑤 𝑛 − 0.252𝑤 𝑛 − 1

Inverse transform

𝑤 𝑛 = 𝑥 𝑛 − 0.1𝑤 𝑛 − 1 + 0.72𝑤 𝑛 − 2
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Direct form II realization

𝒙 𝒏 𝒚 𝒏

Z-1

Z-1

−𝟎. 𝟏

𝟎. 𝟕𝟐

−𝟎. 𝟐𝟓𝟐

𝒘 𝒏

𝑦 𝑛 = 0.7𝑤 𝑛 − 0.252𝑤 𝑛 − 1 𝑤 𝑛 = 𝑥 𝑛 − 0.1𝑤 𝑛 − 1 + 0.72𝑤 𝑛 − 2

𝟎. 𝟕
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Cascade form realization

Let us consider an IIR system with system function

𝐻1 𝑧 =
𝑏𝑘0 + 𝑏𝑘1𝑧

−1 + 𝑏𝑘2𝑧
−2

1 + 𝑎𝑘1𝑧
−1 + 𝑎𝑘2𝑧

−2

𝐻2 𝑧 =
𝑏𝑚0 + 𝑏𝑚1𝑧

−1 + 𝑏𝑚2𝑧
−2

1 + 𝑎𝑚1𝑧
−1 + 𝑎𝑚2𝑧

−2

H1(z) H2(z)
𝒙 𝒏 𝒚 𝒏

Z-1

−𝒂𝒌𝟏

𝒙 𝒏 = 𝒙𝟏 𝒏

𝒚𝟏 𝒏
= 𝒙𝟐 𝒏

Z-1

Z-1

𝒚 𝒏

Z-1

−𝒃𝒌𝟏

−𝒂𝒌𝟐 −𝒃𝒌𝟐

𝒃𝒌𝟎

−𝒂𝒎𝟏 −𝒃𝒎𝟏

−𝒂𝒎𝟐 −𝒃𝒎𝟐

𝒃𝒎𝟎
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Cascade form realization

Q) Realise the system with difference equation

𝑦 𝑛 =
3

4
𝑦 𝑛 − 1 −

1

8
𝑦 𝑛 − 2 + 𝑥 𝑛 +

1

3
𝑥 𝑛 − 1 in cascade form

𝑌 𝑧 =
3

4
𝑌 𝑧 𝑧−1 −

1

8
𝑌 𝑧 𝑧−2 + 𝑋 𝑧 +

1

3
𝑋 𝑧 𝑧−1

Solution 𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
Taking Z - Transform

𝑌 𝑧 1 −
3

4
𝑧−1 +

1

8
𝑧−2 = 𝑋 𝑧 1 +

1

3
𝑧−1

𝑌 𝑧

𝑋 𝑧
=

1 +
1
3
𝑧−1

1 −
3
4
𝑧−1 +

1
8
𝑧−2

𝑌 𝑧

𝑋 𝑧
=

1 +
1
3
𝑧−1

1 −
1
2
𝑧−1 1 −

1
4
𝑧−1

𝐻1 𝑧 =
1 +

1
3
𝑧−1

1 −
1
2
𝑧−1

𝐻2 𝑧 =
1

1 −
1
4
𝑧−1
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𝐻1 𝑧 =
1 +

1
3
𝑧−1

1 −
1
2
𝑧−1

𝐻2 𝑧 =
1

1 −
1
4
𝑧−1

Z-1

𝟏

𝟐

𝟏

𝟑

𝒙 𝒏 = 𝒙𝟏 𝒏

Z-1

𝟏

𝟒

𝒚𝟏 𝒏
= 𝒙𝟐 𝒏 𝒚𝟐 𝒏

𝑌1 𝑧 = 𝑋1 𝑧 +
1

3
𝑋1 𝑧 𝑧

−1 +
1

2
𝑌1 𝑧 𝑧

−1

𝑦1 𝑛 = 𝑥1 𝑛 +
1

3
𝑥1 𝑛 − 1 +

1

2
𝑦1 𝑛 − 1

𝑌2 𝑧 = X2 𝑧 +
1

4
𝑌2 𝑧

𝑦2 𝑛 = x2 𝑛 +
1

4
𝑦2 𝑛 − 1
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Parallel form realization

A parallel form realisation of an IIR system can be obtained by performing a partial expansion

𝐻 𝑧 = 𝐶 +෍

𝑘=1

𝑁
𝐶𝑘

1 − 𝑃𝑘𝑧
−1

𝐻 𝑧 = 𝐶 +
𝐶1

1 − 𝑃1𝑧
−1 +

𝐶2
1 − 𝑃2𝑧

−1 +⋯+
𝐶𝑁

1 − 𝑃𝑁𝑧
−1

𝑌 𝑧 = 𝑐𝑋 𝑧 + 𝐻1 𝑧 𝑋 𝑧 + 𝐻2 𝑧 𝑋 𝑧 +⋯+ 𝐻𝑁 𝑧 𝑋 𝑧

Hk(z)

𝑪

𝒚 𝒏

𝒙 𝒏

H2(z)

H1(z)
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Parallel form realization

Q) Realise the system given by difference equation

𝑦 𝑛 = −0.1𝑦 𝑛 − 1 + 0.72𝑦 𝑛 − 2 + 0.7𝑥 𝑛 − 0.25𝑥 𝑛 − 2 in parallel form

Taking Z - Transform

𝑌 𝑧 = −0.1𝑌 𝑧 𝑧−1 + 0.72𝑌 𝑧 𝑧−2 + 0.7𝑋 𝑧 − 0.25𝑋 𝑧 𝑧−2

𝑌 𝑧 1 + 0.1𝑧−1 − 0.72𝑧−2 = 𝑋 𝑧 0.7 − 0.25𝑧−2

𝐻 𝑧 =
0.7−0.25𝑧−2

1+ 0.1𝑧−1−0.72𝑧−2

= 0.35 +
−0.035𝑧−1+0.35

1+0.1𝑧−1−0.72𝑧−2

= 0.35 +
0.206

1 + 0.9𝑧−1
+

0.144

1 − 0.8𝑧−1
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𝐻 𝑧 = 0.35 +
0.206

1 + 0.9𝑧−1
+

0.144

1 − 0.8𝑧−1

Parallel form realization

Z-1

𝒙 𝒏 𝟎. 𝟐𝟎𝟔

−𝟎. 𝟗

Z-1

𝒚 𝒏

𝟎. 𝟖

𝟎. 𝟏𝟒𝟒

𝟎. 𝟑𝟓
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Multi rate DSP

• The processing of a discrete time signal at different sampling rates in
different parts of a system is called multi rate DSP

• Discrete time system that employ sampling rate conversion while
processing the discrete time signal are called multi rate DSP system

• The process of converting a signal from one sampling rate to another
sampling rate are of two types

• Down sampling or decimation

• Up sampling or interpolation

YouTube - IMPLearn 

www.iammanuprasad.com



Down sampling 

• It is the process of reducing the sampling rate by an integer factor D or M

• Down sampled signal of x(n) can be obtained by simply keeping every
Mth sample and removing (M-1) in between samples

ꜜM
𝒙 𝒏 𝒚 𝒏 = 𝒙 𝑴𝒏

𝑥 𝑛 = 1,−1, 2, 4, 0, 3, 2, 1, 5 for M=2

𝑥 𝑀𝑛 = 1, 2, 0, 2, 5
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Spectrum of the down sampled signal 

• If the Fourier transform of the input-signal of a down samples in 𝑋 𝑒𝑗𝜔 , then the

Fourier transform Y 𝑒𝑗𝜔 of the output signal y(n) is a sum of M uniformly shifted and

stretched version of 𝑋 𝑒𝑗𝜔 scaled by a factor of 1/M

𝑌 𝑒𝑗𝜔 =
1

𝑀
෍

𝑘=0

𝑀−1

𝑋 𝑒
𝑗
𝜔−2𝜋𝑘

𝑀
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Q) Consider a spectrum of input signal 𝑋 𝑒𝑗𝜔 with a bandwidth of −
𝜋

2
to

𝜋

2
shown , when the signal is down

sampled by a factor D, sketch the spectrum of a down sampled signal for sampling rate reduction factor
D=2,3

−𝝅 𝝅 𝟐𝝅-𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐
−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎

For M/D=2

𝑌 𝑒𝑗𝜔 =
1

2
෍

𝑘=0

1

𝑋 𝑒
𝑗
𝜔−2𝜋𝑘

2

𝑌 𝑒𝑗𝜔 =
1

2
𝑋 𝑒

𝑗
𝜔
2 +

1

2
𝑋 𝑒

𝑗
𝜔−2𝜋
2

When D=2

Bandwidth =D.BW =2π
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1

2
𝑋 𝑒

𝑗
𝜔
2

−𝝅 𝝅 𝟐𝝅−𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎−𝟑𝝅−𝟒𝝅 −

𝟓𝝅

𝟐
−
𝟕𝝅

𝟐
𝟑𝝅 𝟒𝝅

𝟓𝝅

𝟐

𝟕𝝅

𝟐

𝟏

𝟐

−𝝅 𝝅 𝟐𝝅−𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎−𝟑𝝅−𝟒𝝅 −

𝟓𝝅

𝟐
−
𝟕𝝅

𝟐
𝟑𝝅 𝟒𝝅

𝟓𝝅

𝟐

𝟕𝝅

𝟐

1

2
𝑋 𝑒

𝑗
𝜔−2𝜋
2

−𝝅 𝝅 𝟐𝝅−𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎−𝟑𝝅−𝟒𝝅 −

𝟓𝝅

𝟐
−
𝟕𝝅

𝟐
𝟑𝝅 𝟒𝝅

𝟓𝝅

𝟐

𝟕𝝅

𝟐

𝑌 𝑒𝑗𝜔 =
1

2
𝑋 𝑒

𝑗
𝜔
2 +

1

2
𝑋 𝑒

𝑗
𝜔−2𝜋
2
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Q) Consider a spectrum of input signal 𝑋 𝑒𝑗𝜔 with a bandwidth of −
𝜋

2
to

𝜋

2
shown , when the signal is down

sampled by a factor D, sketch the spectrum of a down sampled signal for sampling rate reduction factor
D=2,3

−𝝅 𝝅 𝟐𝝅-𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐
−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎

For M/D=3

𝑌 𝑒𝑗𝜔 =
1

3
෍

𝑘=0

2

𝑋 𝑒
𝑗
𝜔−2𝜋𝑘

3

𝑌 𝑒𝑗𝜔 =
1

3
𝑋 𝑒

𝑗
𝜔
3 +

1

3
𝑋 𝑒

𝑗
𝜔−2𝜋
3 +

1

3
𝑋 𝑒

𝑗
𝜔−4𝜋
3

When D=3

Bandwidth =D.BW =3π
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1

3
𝑋 𝑒

𝑗
𝜔
3

−𝝅 𝝅 𝟐𝝅−𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎−𝟑𝝅−𝟒𝝅 −
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Anti-aliasing filters

• In order to avoid aliasing the input signal should be band limited to π/D for
decimation by a factor of D

ꜜM
𝒙 𝒏 𝒚 𝒏 = 𝒙 𝑴𝒏

h(n) 

Anti-aliasing 
filter
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Up sampling 

• It is the process of increasing the sampling rate by an integer factor I or L

• Up sampled signal of x(n) can be obtained by a factor of L by L-1 equally
spaced zeros between each pairs of samples

ꜛL
𝒙 𝒏 𝒚 𝒏 = 𝒙

𝒏

𝑳

𝑥 𝑛 = 1, 2, 3, 4, 5 for I/L=3

𝑥
𝑛

𝐿
= 1, 0, 0, 2, 0, 0, 3, 0, 0, 4,0,0
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Spectrum of the up sampled signal 

• The term 𝑋 𝑒𝑗𝜔𝐼 is the frequency compressed version of 𝑋 𝑒𝑗𝜔 by a factor I.

• If the frequency response is periodic with 2π , the 𝑋 𝑒𝑗𝜔𝐼 will repeat I times in a period

of 0 to 2π in the spectrum of up sampled

𝑌 𝑒𝑗𝜔 = 𝑋 𝑒𝑗𝜔𝐼
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Q) The spectrum of discrete time signal is shown below. Draw the spectrum of the signal if it is upscaled by
I=2,3

−𝝅 𝝅 𝟐𝝅−𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎−𝟑𝝅−𝟒𝝅 −

𝟓𝝅

𝟐
−
𝟕𝝅

𝟐
𝟑𝝅 𝟒𝝅

𝟓𝝅

𝟐

𝟕𝝅

𝟐
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For I or L=3

𝑌 𝑒𝑗𝜔 = 𝑋 𝑒𝑗3𝜔

When I=3

Bandwidth =BW/I =2π/3

−𝝅 𝝅 𝟐𝝅-𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐
−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎

−𝝅 𝝅 𝟐𝝅-𝟐𝝅 −
𝝅

𝟐

𝝅

𝟐
−
𝟑𝝅

𝟐

𝟑𝝅

𝟐
𝟎

For I or L=2

𝑌 𝑒𝑗𝜔 = 𝑋 𝑒𝑗2𝜔

When I=2

Bandwidth =BW/I =π
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Anti-imaging filters

• When up sampled by a factor of I, the output spectrum will have I images in each

period with each image bandwidth to
𝜋

𝐼

• Since the frequency spectrum in the range to 0 to
𝜋

𝐼
are unique and we have to

filter the other images

• Hence the output of up samples is passed through a lowpass filter with band

width
𝜋

𝐼

• Since the lowpass filter is designed to avoid multiple images in output spectrum ,
it also called anti-imaging filter

h(n)
𝒙 𝒏 𝒚 𝒏

ꜛI

Anti-imaging 
filter
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• The programmable digital signal processors (PDSPs) are general purpose
microprocessors designed specifically for digital signal processing applications.

• They contain special architecture and instruction set to execute computation -
intensive DSP algorithms more efficiently.

• General purpose digital signal processors: These are basically high-speed
microprocessors with architecture and instruction sets optimized for DSP
operations.

• Special purpose digital signal processors: These types of processors consist of
hardware i) designed for specific DSP algorithms such as FFr, ii) hardware
designed for specific applications such as PCM and filtering.

Digital Signal Processors
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• The term Harvard originated from the Harvard Mark 1 relay-based computer which stored instruction on
punched tape and data in relay latches

• The Harvard architectures physically separate memories for their instructions and data, requiring dedicated
buses for each of them.

• Instructions and operands can therefore be fetched simultaneously.

• Most of the DSP processors use a modified Harvard architecture with two or three memory buses; allowing
access to filter coefficients and input signals in the same cycle.

• Since it possesses two independent bus systems, the Harvard architecture is capable of simultaneous reading an
instruction code and reading or writing a memory or peripheral as part of the execution of the previous
instruction.

Harvard Architecture
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• To improve the efficiency, advanced microprocessors and digital signal processors use an approach
called pipelining in which different phases of operation and execution of instructions are carried out
in parallel.

• In modem processors the first step of execution is performed on the first instruction, and then when
the instruction passes to the next step, a new instruction is started.

• The Fetch phase(F) in which the next instruction is fetched from the address stored in the program counter.

• The decode phase (D) in which the instruction in the instruction register is decoded and the address in the program
counter is incremented

• Memory read (R) phase reads the data from the data buses and also writes data to the data buses.

• The Execute phase (X) executes the instruction currently in the instruction register and also completes the write
process.

Pipelining

F1 D1 R1 X1
Instruction 1

F2 D2 R2 X2
Instruction 2

F3 D3 R3 X3
Instruction 3

F4 D4 R4 X4
Instruction 4
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Multiply Accumulate Unit (MAC)

• The Multiply-Accumulate (MAC) operation is the basis of many digital signal processing algorithms

• In digital signal processing, the multiply–accumulate (MAC) operation is a common step that
computes the product of two numbers and adds that product to an accumulator.

• The hardware unit that performs the operation is known as a multiplier–accumulator (MAC unit); the
operation itself is also often called a MAC

• The MAC speed applies both to finite impulse response (FIR) and infinite impulse response (IIR)
fi1ters. The complexity of the filter response dictates the number MAC operations required per
sample period.

• A multiply-accumulate step performs the following:

• Reads a 16-bit sample data (pointed to by a register)

• Increments the sample data-pointer by 2

• Reads a. 16-bit coefficient (pointed to by another register)

• Increments the coefficient register pointer by 2

• Sign Multiply (16-bit) data and coefficient 'to yield a 32~bit resu1t

• Adds the result to the contents of a 32-bit register pair for accumulate.
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TMS320C67xx - Digital Signal Processor

• The TMS320 DSP family consists of fixed-point, floating-point, and multiprocessor digital signal
processors (DSPs).

• TMS320 DSPs have an architecture designed specifically for real-time signal processing.

• With a performance of up to 6000 million instructions per second (MIPS) and an efficient C
compiler, the TMS320C6000 DSPs give system architects unlimited possibilities to differentiate
their products.

• High Performance

• Ease of use

• affordable pricing

• The C6000 devices execute up to eight 32-bit instructions per cycle. The C67x CPU consists of 32
general-purpose 32-bit registers and eight functional units.

• These eight functional units contain:

• Two multipliers

• Six ALUs
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TMS320C67xx DSP 

Architecture 

• Central Processing Unit (CPU)

• Internal Memory

• Memory and Peripheral 
Options
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TMS320C67xx DSP 

Architecture 

• Central Processing Unit
(CPU)

• Program fetch unit

• Instruction dispatch unit

• Instruction decode unit

• Two data paths, each with four
functional units

• 32 32-bit registers

• Control registers

• Control logic

• Test, emulation, and interrupt
logic
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TMS320C67xx DSP 

Architecture 

• DMA – Direct memory 
Access

• EMIF – External Memory 
interface

• Program memory/Program 
cache

• Data memory /Data cache  
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TMS320C67xx DSP Architecture 

• DMA Controller (C6701 DSP only) transfers data between address ranges in the
memory map without intervention by the CPU. The DMA controller has four
programmable channels and a fifth auxiliary channel.

• EDMA Controller performs the same functions as the DMA controller. The EDMA has 16
programmable channels, as well as a RAM space to hold multiple configurations for future transfers.

• HPI is a parallel port through which a host processor can directly access the CPU’s memory space.
The host device has ease of access because it is the master of the interface. The host and the CPU can
exchange information via internal or external memory. In addition, the host has direct access to
memory-mapped peripherals.

• Expansion bus is a replacement for the HPI, as well as an expansion of the EMIF. The expansion
provides two distinct areas of functionality (host port and I/O port) which can co-exist in a system.
The host port of the expansion bus can operate in either asynchronous slave mode, similar to the HPI,
or in synchronous master/slave mode. This allows the device to interface to a variety of host bus
protocols. Synchronous FIFOs and asynchronous peripheral I/O devices may interface to the
expansion bus.
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TMS320C67xx DSP Architecture 

• McBSP (multichannel buffered serial port) is based on the standard serial port interface found on the
TMS320C2000 and TMS320C5000 devices. In addition, the port can buffer serial samples in
memory automatically with the aid of the DMA/EDNA controller. It also has multichannel capability
compatible with the T1, E1, SCSA, and MVIP networking standards.

• Timers in the C6000 devices are two 32-bit general-purpose timers used for these functions:

• Time events

• Count events

• Generate pulses

• Interrupt the CPU

• Send synchronization events to the DMA/EDMA controller.

• Power-down logic allows reduced clocking to reduce power consumption. Most of the operating
power of CMOS logic dissipates during circuit switching from one logic state to another. By
preventing some or all of the chip’s logic from switching, you can realize significant power savings
without losing any data or operational context.
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Finite Word length Effects

• In the design of FIR Filters, the filter coefficients are determined by the system
transfer functions. These filters co-efficient are quantized/truncated while
implementing DSP System because of finite length registers.

• Only Finite numbers of bits are used to perform arithmetic operations. Typical word
length is 16 bits, 24 bits, 32 bits etc.

• This finite word length introduces an error which can affect the performance of the
DSP system.

• Input quantization error

• Co-efficient quantization error

• Overflow & round off error (Product Quantization error)
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Quantization Error

• The effect of error introduced by a signal process depend upon number of factors including the.

• Type of arithmetic

• Quality of input signal

• Type of algorithm implemented

• For any system, during its functioning, there is always a difference in the values of its input and
output. The processing of the system results in an error, which is the difference of those values. The
difference between an input value and its quantized value is called a Quantization Error.
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Input quantization error

• The conversion of continuous-time input signal into digital value produces an error which is known
as input quantization error. This error arises due to the representation of the input signal by a fixed
number of digits in A/D conversion process

𝑒 𝑛 = 𝑥𝑞 𝑛 − 𝑥 𝑛

𝑥𝑞 𝑛 → 𝑠𝑎𝑚𝑝𝑙𝑒 𝑞𝑢𝑎𝑡𝑖𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑥 𝑛 → 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒
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Product Quantization error

• In fixed point arithmetic the product of two b-bit numbers results in 2b bits long. In DSP applications
it is necessary to round this product to b-bit number which produce an error known as product
quantization error or product round off noise

𝑒 𝑛

𝑥𝑞 𝑛 𝑦 𝑛 = 𝑎𝑥𝑞 𝑛 + 𝑒 𝑛

𝒂

• The multiplication is modelled as an infinite precision multiplier followed by an adder where round
off noise is added to the product so that overall result equals some quantization level
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Coefficient quantization error

• In the design of a digital filter the coefficients are evaluated with infinite precision.

• But when they are quantized, the frequency response of the actual filter deviates
from that which would have been obtained with an infinite word length
representation and the filter may actually fail to meet the desired specifications.

• If the poles of the desired filter are close to the unit circle, then those of the filter
with quantized coefficients my lie just outside the unit circle
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Coefficient quantization error

• Consider a second order IIR filter with

YouTube - IMPLearn 

www.iammanuprasad.com


	1
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	2
	Slide 5
	Slide 6

	3
	Slide 7
	Slide 8

	4
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	5
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

	11
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

