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DFT

Let us defineaterm Wy = e

Discrete Fourier Transform (DFT)

X(k) = DFT[x(n)]

= _ J2mkn
X(k)=zx(n)e N ,0<k<N-1
n=0

N-1

X(k)=zx(n)w o g<k<N-1

n=0
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IDFT

DFT is a powerful computation tool which allows us to evaluate the Fourier transform on a digital computer or
specifically designed hardware

We notate like this

x(n) = IDFT[X (k)]

N
j2mkn

x(n)— (k)e N ,0<n<N-1

j2m
‘N which is known as twiddle factor and substitute in above equations

N-1
1
x(n) =NZX(I{)W§"" ,0<n<N-1




Let us take an example
Q) Find the DFT of the sequence x(n) = {1,1,0,0}

N =4
3
21Tkn
X(k)zzx(n)e 0<k<N-1
n=0
k=20
> j2mon
YMOE x(n)e 4

=x(0) +x(1) + x(2) + x(3)

=1+1+0+0 =
k=1
_Jmn
X(1)=Zx(n)e 2
n=0

31T

= x(0) + x(l)e_an +x(2)e /™ + x(3)e_]T

—1+1[cosz— 'sinz]+0+0 =

N-1

X(k) = Z e

n=0

j2mkn

k=2

jm2n

X(2) = Z e 7

n=0

= x(0) + x(1)e ™ 4+ x(2)e 2™ + x(3)e /3™

=1+ 1[cosm —jsinm] +0+0
k=3 3
_Jm3n
X(3) = Zx(n)e 2
n=0
j3m

=x(0) +x(1e"

=1+1 cos——]sm— +0+0
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DFT as linear transformation (Matrix method)

DFT
N—-1
X(k) = z x(m)e"R* 0<k<N-1
— j2
= WN = 3_%

Letsputn=20,1,2, ... N-1

X(k) = x(0). 1 + x(1). WA + x(2). W2k + - + x(N — DW D"

k=20
X0)=x(0)+x(D)+x2)+--+x(N—-1)
k=1

X(1) = x(0) + x(1). W + x(2). W2 + -+ x(N — DWW

k=N-1

X(N —1) = x(0) + x(D. W™ 4 2@ W2V 4+ o4 x (N — N THED

We can also represent the equation in matrix format

1 1 1 1

) . 2 3
X(1) 1 Wy U4 Wy
X(2) 1wy Wy Wy
x@ |~} wd W Wy

[ X(N —1)] 1 W}&N—l) WNZ(N—l) WN3(N—1)

1 1

Xy = Wyxy 2 1wyt
N = . .

1 wy®-

IDET

1
W(N—1) x(0)
Ig(N—l) x(1)
Wy x(2)
WNB(N—l) x(?)
WléN—l)(N—l)_ x(N —1).
1
-(N-1)
Wy

WN—(N—l) (N-1)

N—-1
1
x(n) =N2X(k)w,§"k 0<n<N-1
k=0

N-1
1 :
x(n) =~ Y X()(w")
k=0

Symbolically we can 1 )
. =—=XyW,
www.ipgmMEit@@Ssad.com x(n) NONTN

Comparing we get

Wyt

1 *
ZNWN




Lies on the unit circle in the complex plane from 0 to 2x angle and it gets

Twiddle factor matrix

repeated for every cycle

-1

]

(S G W

e/% = cos(0) + jsin(H)

Imaginary
axis
T W3 W7 Wll
Phase change ( 0° - 360°) -
anticlockwise
1 w2, Wwe,w N wo,w*,we
]1 wt Real axis
—Jj
wt ws,w?e
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Relationship of the DFT to Fourier Transform

Fourier-Transform DFT
N-1 N-1
) ) _ j2mkn
X(ef“)) = z x(n)e J®n X(k) = 2 x(n)e N
n=0 n=0

Comparing the above equations we get to find that DFT of x(n)
Is @ sampled version of the FT of the sequence

Xk)=XE*)| ,x k=012.N-1
w=

N
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Z-Transform

N-1

X(Z) = z Bz

n=0

Substitute the value of x(n)

N-1
X(2) = z
n=0

T
=

=~
w
I
(e]

=
L

Z[ =
i

X (k)

X (k)

o

IDET

Relationship of the DFT to Z-Transform

N—-1
1
X@) =5 ) X()
k=0

1—(e N

N

jz—nkz_l)

j2mk

| 1—e N z71

1— ejZTL'kZ—N
j2mk
[1—e N z71

e ———

N-1
1 1—zN
=n 2 X0 j2mk
k=0 1—e N z71
N—
-z VN[ XK
N—1 X(Z) - N j2mk
1 — aN k=0ll—e N z~1
n —
¢ 1—a
k=0
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Properties of Discrete Fourier Transform

Periodicity

If X(k) is N-point DFT of a finite duration sequences x(n) then

x(n+ N) =x(n) foralln
X(k+ N)=X(k) forallk

Linearity
If two finite sequences x,(n) and x,(n) are linearly combined as

x3(n) = ax;(n) + bx,(n)

Then DFT of the sequence

X3(k) = aX; (k) + bX,(k)

DFT
ax;(n) + bx,(n) < aX,(k) + bX, (k)

Circular time shift

If X(k) is N-point DFT of a finite duration sequences x(n) then

j2mkm

DFT{x((n—m)) } X(k)ee N

Proof
IDFT
N-1
1 j2mkn
) =NZX(k)e—N 0<n<N-1
k=0
Put n=n-m
N— 4
1 j2mk(n—-m)
_ — X(k N .
x(n=m) N Z) X(kje v Take DFT on both sides
1 j2mkn —j2mkm
4 N X(k)e - —j2mkm
k=0 DFT{x(n—m)} =X(k)e N
—j2nkm
x(n—m)=x(n)e N
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Q) Consider a finite length sequences x(n) shown in figure. The five point DF of x(n) is denoted by

j2mkm

DFT {x((n - m))N} = X(k)e™ W

—4mk x(n) 5

A

\4

X(Kk). Plot the sequences whose DFT is
2
N i
2 3

Y(k) =e 5 X(k)
1]
1 0 1

Solution

j2mk?2

DFT {x((n — 2))5} =X(k)e™ 5 ,n=01,..,4

Forn=0 2 y(0) = x((0— 2))5 =x(5+0-2)=x3) =1

Forn=1 2 y(1)=x(1-2) =x(5+1-2)=x(4)=0

Forn=2 = y(2) = x((2- 2))5 =x(5+4+2-2)= = x(5-5)=x(0) =1
Forn=3 2 y(3)=x(B-2),=x(5+3-2)= =x(6—-5)=x(1) =2 y(n)
Forn=4 @ y4)= X((4—2))5 =x(5+4-2)= =x(7—-5)=x(2) =2

y(n) ={1,0,1,2,2}

\ 4

A

H
o=
N —o

H
w—‘l\)
Ao

Ll
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Properties of Discrete Fourier Transform

Time reversal of the sequence

The time reversal of N-point sequence x(n) is attained by

wrapping the sequence x(n) around the circle in clockwise direction.

x((—n))N = DFT{x(N —n)} = X(N — k)

Circular frequency shift

If X(k) is N-point DFT of a finite duration sequences x(n) then

DFT [x(n)ejz%m] = X((k - l))N

j2min

x(k—0)=X(k)e N
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Take DFT on both sides

Proof
DFT sl
_ J2mkn
X(k) = z x(n)e
n=0
Put k=k-I
N-1 _
_j2n(k=Dn
X(k = 1) = z x(m)e™ N
n=0
N-1 _ _
j2wkn j2mln
= Z x(n)ne- N e N
n=0

X((k - l))N = DFT {x(n)e

j2min

N

)




Complex conjugate property

Properties of Discrete Fourier Transform

If X(K) is N-point DFT of a finite duration sequences x(n) then

DFT{x* ()} = X*(N — k) = X*((=k)),,

Proof
N-—1
_ J2mkn
DFT{x(n)} = Z x(n)e” "N
n=0
N-—1
_j2mkn
DFT{x*(n)} = Z e N
n=0

N-1

N

j2mkn
DFT{x(n)} = Zx(n)e N
n=0
[N—1
j2mkn
= Zx(n)e N
| n=0
[N—1
j2mn( =)
— zx(n)e
| n=0

]*

DFT{x(n)} = [X(N — k)]*
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Q) Let X(k) be a 14 point DFT of a length 14 real sequence x(n). The first 8 samples of X(k) are given by,

X(0) = 12,
X(1) = -1+3j,
X(2) = 3+4j,
X(3) = 1-5j,
X(4) = -2+2j,
X(5) = 6+3],
X(6) = -2-3],
X(7) = 10.

Solution

Given N=14

Determine the remining samples

For n=8 =»

For n=9 =»

For n=10 =»

For n=11 =»

For n=12 =

For n=13 =»

X(8)=X*(N—k) =X*(14—-8) = X*(6) = —2 + 3j
X(9) =X*(N—k) =X*(14—9) = X*(5) = 6 — 3j
X(10) = X*(N — k) = X*(14 — 10) = X*(4) = -2 — 2j
X(11) =X*(N—k) =X*(14—-11) = X*(3) = 1 + 5]
X(12) = X*(N — k) = X*(14 — 12) = X*(2) = 3 — 4j

X(13)=X*(N—-k)=X"(14-13)=X* (1) =-1-13j
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Linear Convolution

Consider a discrete sequence x(n) of length L and impulse sequence h(n) of length M,
the equation for linear convolution is

(0]

ym = > x(Oh(n -

k=—o0

Where length of y(n) is L+M-1

Let s discuss it with an example

Q) Find the convolution of x(n) ={1,2,3,1}, h(n)={1,1,1,}

Solution
L=4M=3
y(n) = z x(k)h(n — k) Of length > 4+3-1=6
k=—o0
Forn=0 2 y(0) = Z x(h(—=k) = (1.0) + (1.0) + (1.1) + (0.2) + (0.3) + (0.1) =1

k=—co0
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x(k)

A

v

A

3 2 -1
h(k) 1

|

1

\ 4

A

3 2 -1

v



(00) oo

Forn=1 2 y(1) = z 2 (k)R(1 — k) = Z x()h(=k + 1)

k=—o0 k=—o0

=(1.0)+ (1.1) + (1.2) + (0.3) + (0.1) =3

Forn=2 2 y(2) = Z 2 (2 — k) = z x()h(=k + 2)

k=—o0 k=—o0

=(1.1)+12)+(13)+(0.1)=6

Forn=3 2 y(3) = Z *(RhB = k) = Z x(K)h(—k + 3)

k=—oc0 k=—o0

=01+ 12+ 13D+ =6

(00] oo

Forn=4 2 y(4) = Z x(l)h(4 — k) = Z x()h(=k + 4)

k=—oc0 k=—o0

= (0.1) + (0.2) + (1.3) + (1.1) = 4

(0] (0]

Forn=s 2 y(5) = Z x(K)h(5 — k) = Z x(K)h(=k + 5)

k=—0c0 k=—0o0

= (0.1) + (0.2) + (0.3) + (1.1) = 1

y(n) ={1,3,6,6,4,1}
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x(K) 2
1 [ 1
L]
) 32 -1 01 2 3 "
h(k) 1.1 1
L 1]
) 32 -1 01 2 3 '
h(-k) Tf'l
) 32 -1 01 2 3 g
h(-k+1) Tl 141
) 32 -1 (01 2 3 "
h(-k+2) f I Tl
) 32 -1 (01 2 3 "
h(-k+3) .l Tl Il
) 32 -1 (o1 2 3 ”
h(-k+4) TlfT
) 3 2 -1 (0 1 273 ]
h(-k+5) TI
) 32 -1 (012 3 ”



Q) Find the convolution of x(n) ={1,2,3,1}, h(n)={1,1,1,}

Solution

y(n) ={1,3,6,6,4,1}
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Circular Convolution

Consider two discrete sequence x,(n) & x,(n) of length N with DFTs X, (k), X,(k)

Also
N-1
x3(n) = Z x1(m)xz ((n —m)) x3(n) = x;(n) O x,(n) DFT{x;(n) © x,(n) } = X, (k). X, (k)
m=0
Matrix method
Let s discuss it with an example
Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,}
S°'““°”L N . 1 3 2] [1 (1.1)+(4.-1)+(3.1)+(2.0) = 0
_ ' _ 2 4 3 il (2.1)+(L.-1)+(4.1)+(3.0) =5
Since lengths are not same we do zero-padding =
3 1 4 1 3.1)+(2.-1)+(1.1)+(4.0) =2
0 (3.1)+(2.-1)+(1.1)+(4.0)
4 2 1 0 (4.1)+(3.-1)+(2.1)+(2.0) =3

y(n) ={0,5,2,3}
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Circular Convolution

Concentric Circle method / Stockholm's Method

Let s discuss it with an example
Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,}

Solution
L=4M=3

Since lengths are not same we do zero-padding

h(n) = {1,-1,1,0}

Forn=0=> vyO0)=((D+C0O+@BDH+H.-1) =0
Forn=1=2 y(O)=0-D+EH+G.O+ 1) =5
Forn=2= y2)=0D+C-D+G1H+40) =2

Forn=3 2 y(3)=(10)+ Q1D+ G.—1)+“1) =3

y(n) =1{0,5,2,3}
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Linear convolution using circular convolution

Let there are two sequence x(n) with L and h(n) with length M. in linear convolution the length of output in L+M-1. In circular
convolution the length of the both input is L=M

Let s discuss with an example
Q) Find the convolution of the sequences x(n) = {1,2,3,1}, h(n)={1,1,1,}

First we have to make the length of the x(n) and h(n) by adding zeros

x(n) ={1,2,3,1,0,0}  (M-1 zeros)

h(n) = {1,1,1,0,0,0}  (L-1 zeros)

(1.1)+(0.1)+(0.1)+(2.0) +(3.0) +(2.0) =1
(2.1)+(1.1)+(0.1)+(0.0) +(1.0) +(3.0) =3
(3.1)+(2.1)+(1.1)+(0.0) +(0.0) +(1.0) =6
(1.1)+(3.1)+(2.1)+(1.0) +(0.0) +(0.0) =6
(0.1)+(1.1)+(3.1)+(2.0) +(1.0) +(0.0) = 4
(0.1)+(0.1)+(1.1)+(3.0) +(2.0) +(1.0) =1

© O Fkr W N B
W N O O
wWw N B O O -
N PO O P W
R O O Fk W N
O O O Fkr =k .
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Filtering of long duration sequences

Let s consider an input sequence x(n) of length L, and response h(n)of length M, the steps to
follow overlap — save method is

Step 1 : input x(n) is divided into length L (ZL>M)
Step 2 : Calculate the length N=L+M-1

Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from
previous segment, making each of length N

Step 4 : Make impulse response to length N by adding zeros
Step 5 ; Find the circular convolution of each new segments with new h(n)

Step 6 : Linearly combine each results and take sequence of length L.+M-1 from that by discarding/removing first
M-1 points



Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1}

Solution

Given, Ls =10 & M=3 Lets guess the value of L =3 (L =M)
Step 1 : input x(n) is divided into length L

x1(n) = {3,—-1,0}
x,(n) = {1,3,2}
x3(n) = {0,1,2}
x,(n) = {1,0,0}

Step 2 : Calculate the length N=L+M-1
N=L+M-1 =3+3-1=5
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1) Overlap — save method

Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from
previous segment, making each of length N

x;(n) = {0,0,3,—1,0}
M-1=3-1=2
x1(n) = {3,—1,0}
X2 (n) = {_1101 11312} xz(n) = {1,3,2}
x3(n) ={0,1,2}

x3(n) ={3,2,0,1,2} x4(n) ={1,0,0}

x4(n) = {1;2;1;0;0}

Step 4 : Make impulse response to length N by adding zeros

h(n) = {1,1,1,0,0}
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Step 5 ; Find the circular convolution of each new segments with new h(n)

yi(n) = x,(n) © h(n) ={0,0,3,-1,0} © {1,1,1,0,0} = {-1,0,3,2,2} 0 0 -1 3 071
0 0 0 -1 3| |1
y2(n) = x,(n) O h(n) ={-10,132} ©{1,1,1,0,0} ={4,1,0,4,6} 3 0 0 0 -1| |1
-1 3 0 0 o0f o
y3(n) = x3(n) © h(n) ={32,012} ©{1,1,1,00}  ={67,53,3} L0 -1 3 0 ollo

y.(n) = x,(n) © h(n) ={1,2,1,0,0} ® {1,1,1,0,0} =1{1,3,4,3,1}

Step 6 : Linearly combine each results and take sequence of length L.+M-1 from that by discarding/removing first M-1
points
M-1=3-1=2 _ :
Check whether length of y(n) is Li+M-1 , if yes
discard the higher sequences
y(n) ={3,2,2,0,4,6,5,3,3,4,3,1}
L+M-1=10+3-1=12
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Q) Find the convolution of the sequences x(n) ={1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-save method

Solution

Given, Ls =12 & M=2 Lets guess the value of L =3 (L =M)
Step 1 : input x(n) is divided into length L

x1(n) ={1,2,-1}
x,(n) = {2,3, -2}
xz(n) ={-3,—-1,1}
x,(n) ={1,2,—1}

Step 2 : Calculate the length N=L+M-1
N=L+M-1 =3+2-1=4
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1) Overlap — save method

Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from

previous segment, making each of length N

x;(n) ={0,1,2,—-1}

xo,(n) ={-1,2,3,—2}

x3(n) ={-2,-3,—-1,1}

x,(n) =1{1,1,2,—-1}

xs(n) ={-1,0,0,0}

M-1=2-1=1

Step 4 : Make impulse response to length N by adding zeros

h(n) ={1,2,0,0}
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x1(n) =1{1,2,-1}
x2(n) = {2,3, -2}
x3(n) ={-3,-1,1}
x,(n) =1{1,2, -1}



Step 5 ; Find the circular convolution of each new segments with new h(n)

y1(n) = x;(n) O h(n) ={0,1,2, -1} © {1,2, 0,0} ={-2)1, 4,3} 0 -1 2 17171
y2(n) = x,(n) O h(n) ={-1,23,-2} © {1,200} ={-5,0,7,4) % 2 _01 _21 g
ya(n) = x3(n) © h(n) =1{-2,-3,-1,1} O {1,2,0,0} ={0,-7,—7,—1} sy @ U
yo(n) = x,(m) O h(n) =1{1,1,2,-1}©{1,2,00} ={-1,3,4,3}

ys(n) = xs(n) © h(n) = {-1,0,0,0} ® {1,2,0,0} ={-1,-2,0,0}

Step 6 : Linearly combine each results and take sequence of length L.+M-1 from that by discarding/removing first M-1
points

Check whether length of y(n) is L.-+M-1 , if yes

y(n) = {1,4,3,0,7,4,-7,-7,-1,3,4,3,-2,0,0} discard the higher sequences

L+M-1=12+2-1=13
y(n) = {1,4,3,0,7,4,—7,—-7,—1,3,4,3,-2} + "
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Filtering of long duration sequences

Let s consider an input sequence x(n) of length L, and response h(n) of length M, the steps to
follow overlap — save method is

Step 1 : input x(n) is divided into length L (ZL>M)

Step 2 : Calculate the length N=L+M-1

Step 3 : Add M-1 zeros on each segment (length = L) of x(n)

Step 4 : Make impulse response to length N by adding zeros

Step 5 ; Find the circular convolution of each new segments with new h(n)

Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L,+M-1



Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1}

Solution

Given, L, =10 & M=3 Lets guess the value of L =3 (L=<M)
Step 1: input x(n) is divided into length L (L>M)

x1(n) = {3,—-1,0}
x,(n) = {1,3,2}
x3(n) = {0,1,2}
x,(n) = {1,0,0}

Step 2 : Calculate the length N=L+M-1
N=L+M-1 =3+3-1=5
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1) Overlap — add method

Step 3 : Add M-1 zeros on each segment (length = L) of x(n)

X1 (TL) — {3; _1; 0; O, O} M-1=3-1=2

x;(n) = {3,—1,0}
xy(n) ={1,3,2}
x3(n) =1{0,1,2,0,0} x;(n) = {0,1,2}
x,(n) = {1,0,0}

x2 (n) — {1; 31 2; 0; 0}

x4(n) = {11 O) O; 01 O}

Step 4 : Make impulse response to length N by adding zeros

h(n) ={1,1,1,0,0}
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Step 5 ; Find the circular convolution of each new segments with new h(n)

yi(n) = x;(n) © h(n) = {3,-1,0,0,0,} © {1,1,1,0,0} = {3,2,2, —1,0} 3 0 0 0 -1
-1 3 0 0 0

y2(n) = x,(n) O h(n) =1{1,3,2,0,0} ©{1,1,1,0,0} ={1,46,5.2} 0 -1 3 0 0
0 0 -1 3 0

y3(n) = x3(n) © h(n) =1{0,1,2,0,03 ©{1,1,1,0,0} =1{0,133,2} 0o 0 0 -1 3!

yis(n) = x,(n) © h(n) ={1,0,0,0,0} ® {1,1,1,0,0} ={1,1,1,0,0}

Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L,+M-1

3,2,2,-1,0} Check whether length of y(n) is L;+M-1 , if yes
{1,4,6,5, 2] discard the higher sequences
{0111 3,3, 2} L,+M-1=10+3-1=12

{'1, 1’ 1’ 0’ O} y(n) - {31 2; 2; O; 41 61 5! 3’ 3’ 4’ 3’ 1}

(3,2,2,0,4,6,5,3,3,4,3,1,0,0)
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Q) Find the convolution of the sequences x(n) ={1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-add method

Solution

Given, Ls =12 & M=2 Lets guess the value of L =3 (L =M)
Step 1 : input x(n) is divided into length L

x1(n) ={1,2,-1}
x,(n) = {2,3, -2}
xz(n) ={-3,—-1,1}
x,(n) ={1,2,—1}

Step 2 : Calculate the length N=L+M-1
N=L+M-1 =3+2-1=4
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1) Overlap — save method

Step 3 : Add M-1 zeros on each segment (length = L) of x(n)

x1(n) ={1,2,-1,0} M-1=2-1=1

x,(n) = {2,3,-2,0} x;(n) ={1,2,-1}
x3(n) = {-3,-1,1,0} x,(n) ={2,3, -2}
x,(n) = {1,2,—1,0} x3(n) ={-3,-1,1}

X4(n) = {1121 _1}

Step 4 : Make impulse response to length N by adding zeros

h(n) ={1,2,0,0}
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Step 5 ; Find the circular convolution of each new segments with new h(n)

yi() = x1(M) Oh(n) = {1,2,-1,00 © {1,2,0,0} = {1,4,3,2} ; (1) —01 _21' ;
y2(n) = x,(n) © h(n) =12,3,-2,0; © {1,2,0,0} ={2,7,4, -4} -1 2 1 o0]]o
y3(n) = x3(n) @ h(n) ={-3,-1,1,00 © {1,2,00} ={-3,-7,-1,2} >
ya(n) = x,(n) O h(n) ={1,2,-1,01O {1,200}  ={1,4,3,-2}

Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1

SRBE 2 }
Check whether length of y(n) is Li+M-1 , if yes
27,44} discard the high
_ gher sequences
{=3-7, —1;{2} : L+M-1 = 124+2-1 = 13
1,4,3,—2

{11 41 3! 0, 77 4) _7; _7) _1; 3; 4; 3; _2)} y(n) = {1’4,3,0’7’4' —7,=7,-13,4,3, _2}
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Fast Fourier Transform (FFT)

Lets calculate the DFT of a sequence with N=4 and k=1

3 For a single value of k we have

X(1) = z x(m)W,*

n=0

= x(OW2 + x(DWL + x(2QW2 + x(3)W,}?

For example N=1024

Complex multiplication = N2 Complex Addition = N(N — 1)
— 10242 = 1024(1024 — 1)
= 1048576 = 1047552



MODULE 2 Fast Fourier Transform (FFT)

 DFT takes more time and resources
* Not much efficient

* Much complex

« S0 we come into a new algorithm to make the calculations fast known as fast Fourier Transform (FFT)

» It is a highly efficient procedure for computing the DFT of a sequence for computing the DFT of a finite
sequence and require less number of computation than that of direct evaluation of DFT

* FFT is based on decomposition and breaking the transform into smaller transform and combine them to get
total transform

 FFT make use of the symmetry and periodicity property of twiddle factor

FFT method

For example N=1024

Complex Addition= N log, N

= 1024 log, 1024
log, 1024 — 1024

Complex multiplication = %log2 N

1024

= 5120
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Let us recollect the twiddle factor

Fast Fourier Transform (FFT)

4

For N=8 & k=0

DFT
N-1 j2m
0 _ (-5 _ For N=8 & k=3
X(k)=zx(n)W1’v”‘,OSksN—1 Wg =el s 1
=0 _Jj2m 3 _zmys e
Wy=e N For N=8 & k=1 W8=e( 8) =e 4
_J2m —— 3m 3m
AES e("ﬂTn)k Wy = e( 8 )1 =e 4 = COS (T) — J sin (T)
T - m
For N=4 & k=0 = CO0S (Z) — J Sin (Z) 0 "
W83 e — _]_
1 1 V2 W2
Sy 1 _ . .
wy = (-0 =4 Ws = 7 —J; =07071-0.7071 W@ = —0.7071 — j0.7071
For N=4 & k=1 For N=8 & k=2
. _j2m —jm
W41 = e(_]zTn)'l _jr T .. (T W82 =4 e( 8 )2 =e 2
=—e 2 = COS\=)—JSsin\—=
2 2 — -
= CO0S (—) — jsin (—)
" 2) 73
Wi =-j ]
Wg = —j
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Fast Fourier Transform (FFT)

N N

» Also known as Radix DIT FFT algorithm == o=
» The number of output points N can be expressed as a power X(k) = z X (n)WE"" + W z X, (n)W&”‘
of 2 (N=2M) n=0 2 n=0 2

Let x(n) is an N-point sequence and we are
dividing it into two (even X,(n) & odd x,(n)) parts

X(k) = X, (k) + WX, (k) Fork<N/2

x.(n) = x(2n) x,(n) =x(2n+1)
We know DFT
N-1
X(k) = Z x(M)Wk
= Then
I\ N
71 7!
_ 2nk (2n+1)k N N N
Z x(2n)W™e + z x(2n+ D)Wy X(k) = X, (k — —) - W, 2X, (k — —) For k > N/2
n=0 n=0 2 2
Y N
71 !
= z xQCr)W™ + Wy z x(2n + D)Wy
n=0 USLY
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X (k) = X (k) + Wi X, (k)
N

x(k) = X, (k - g) —w, %X, (k - g)
even odd

xe(0) = x(0)  x,(0) = x(1)

xe(1) =x(2)  x0(1) =x(3)

xe(2) =x(4)  x,(2) = x(5)

xe(3) = x(6) x,(3) = x(7)

X (k) = xo (k) + Wx, (k),

X(k) = xo(k — 4) = Wg*x,(k — 4),

Decimation in Time (DIT)

X(0) = x,(0) + Wg'x,(0)
X(1) = x(1) + Wgx,(1)
X(2) = x,(2) + Wg'x,(2)
X(3) = x.(3) + Wg'x, (3)

X(4) = x.(0) — Wgx,(0)
X(5) = x.(1) — Wgx,(1)
X(6) = x.(2) — Wg'x,(2)
WUEFACIEAZENE)

This operation can be represented by a butterfly diagram

x¢(0) + Wg'x,(0) = X(0)

°
x¢(0) — Wg'x0(0) = X(4)

® a+bW1\’,‘

0
xe(0) o .
Wy
O
for0<k<3
a @
for4a<k<7
Wy
b L o
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Decimation in Time (DIT)

Steps to follow

Step 1 : Find the number of input samples (N)

Step 2 : Bir reversal

Step 3 : Calculate the number of stages (M = log, N)

Step 4 : Calculate the number of max butterflies in stage (N/2)
Step 5 : Calculate the twiddle factor

Step 6 : Evaluate the N point DFT using butterfly diagram
Step7 : The DFT output is in normal order

2-point
DFT
4-point
DFT
2-point
DFT
8-point
DFT
2-point
DFT
4-point
DFT
2-point
DFT

www.iammanuprasad.com

Input

Binary

Bit-reversed

Revised
samples




Decimation in Time (DIT)

Q) Find the DFT of a sequence x(n) = {0, 1, 2, 3} using DIT algorithm

Solution
Step 1 : Find the number of input samples (N) Step 3 : Calculate the number of stages (M = log, N)
N=4
M =log, N =log,4

Step 2 : Bit reversal 82 g2

M =2
T Binar Bit- Revised Step 4 : Calculate the number of max butterflies in stage
P y reversed samples

N 4 ;
2 2
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Decimation in Time (DIT)

Step 5 : Calculate the twiddle factor

Nt
k =om t=0,1,2,..2M"1 -1
Stage =1 (M =1) Stage =2 (M = 2)
£ = t=0,1
for t=0
_ Nt 4.0
T2M T T _ 20
22
for t=1
4.1
j2m k=—=
W4O = e(_T)O = 1 22
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Decimation in Time (DIT)

Step 6 : Evaluate the N point DFT using butterfly diagram

x(n) ={0,1,2,3}

. o— 0 + bW
Wy
.

* a— bW,y

Stage 1 Stage 2

0+21=2 2+41=6 X(0)

x(0) =0 —o— ° i
y—al=—2 24 (-2-j)=-2+2j D

X(Z) =2 Py ° .

x(1) =1 ® ° .
#(3) =3 1-31=-2 —2-(-2.-)=-2-2j *B)

® o C

X(k) =1{6,-2+2j,-2 —2—2j}

www.iammanuprasad.com

Step7 : The DFT output
IS in normal order



Decimation in Time (DIT)

Q) Find the DFT of a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1 } using DIT algorithm

Solution
Step 1 : Find the number of input samples (N) Step 3 : Calculate the number of stages (M = log, N)
N=8
Step 2 : Bit reversal M =log, N =log,8
M=3
Input Binary | Bit-reversed m

Step 4 : Calculate the number of max butterflies in stage

N 8_4
2 2
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Decimation in Time (DIT)

Step 5 : Calculate the twiddle factor

i {(—J),(_) | Stage=3 (M =3) | %-~ Wi o eCE ST
ne S t =023 )6
k = — = M-1 — W2 = —0.7071 — j0.7071 W;:E_’fﬁ = 0.7071 — j0.7071
2% 0 ! for t=0
8.0
St—age—_l ¢ St—age—zz (M:Z) k:?:O W8O=1
=1 M=1)
t=0 (=0 for t=1
- for t=0 -
: 1 1
_— ——— — Wl — A
Nt 8.0 k=o=1 T2 V2
k=— = =0 K 8.0
=— = =7 — _SY_
‘ ; = for t=2
8.2 ; '
for t=1 k=?—2 We =
8.1
= =2
22 _
-2 for t=3
We =-J :?: WSZE—JE
www.iammanuprasad.com




Decimation in Time (DIT)

Step 6 : Evaluate the N point DFT using butterfly diagram

& I5I!-|-F'JI-"'-":..;Ec

x(n) = {11 21 3141 4; 3; 2; 1} H{N’F
Stage 1 Stage 2 b — *a— bWk
2(0) = 1 1+4. =5 5+5. =10 10+ 10.1 = 20 X(0)
o— ° -o ® ——
~3—j+(~1-3j)
x(4) = 4 1-4.1=-3 —3+(1.—)=-3-j —5.82 — j2.414 X(1)
o~ * -- . ®
2) = 3 3+42..=5 5-51=0 0 X(2
X®=3__ . o . o (2)
_ P G )=-3+4j —0.172 — j0.414 X(3
x©) =2 JSozi=1 - . ©))
1) =2 5 10 0 X(4
g S ® -o > —— )
£y = 3 _ _1-3j —0.172 — j0.414 X(5
*(E) =3 =l - o - ©)
X(6) Step7 : The DFT
x(3) — . o " o output is in normal
order
7) =1 3 —1+3j —5.828 + j0.414 (7
XD=1 < o . - (7)

X (k) = {20p~5i82n=rj2odidd) O~ 0.172 — j0.414,0,—0.172 — j0.414,0,—-5.828 + j0.414 }



Fast Fourier Transform (FFT)

 Based on the decomposition of the DFT computation by
forming smaller and smaller sub sequences

* In DIF the output sequence X(K) is divided into smaller and
smaller sub sequences

Let x(n) is an N-point sequence and we are

dividing it into two parts

x,(n) = x(n +g)

x1(n) = x(n)
N
n=012.5-1 n=012. .Y _4

2
We know DFT N
HOEDIRIO &

n=0
N_4 31
nk (n+2)k
= x1 (M)W + x2 (M)W,
n=0 n=0
N N
a1 Ei_l
_ Z X (WK + W, 2 Z s, (M)W
) n=0

When k is even e /¢ = 1

N
7—1

E—l E—l
2

2
X(2k) = z x; (M)W + g =ik z x,(Wik = Z (21 () + xp () )W
=0

n=0

n=0

Y

2
X(2k) = z (. () + xz(n))W%”k
n=0

When k is odd e /™% = —1

L

2
XQk+1) = 2 (21(n) — xp () )W, O™
n=0
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2
X2k +1) = Z (22 () — 505 () ) Wk W7
n=0 2




Decimation in Frequency (DIF)

N
=i
X(2k) = Z (22(n) + x, () )WR* X(0) = x1(0) + x2(0) X(4) = [x1(0) — x,(0)]Wg
i i X(1) = x2,(1) + x,(1) X(5) = [y (1) — 2, (1) W
2
XQk+1) = z (1. (0) — () )W W X(2) = x1(2) + x,(2) X(6) = [x,(2) — x(2)]W¢
= : MOEEAOREAE) X(7) = [0 (3) — %, ()W
This operation can be represented by a butterfly diagram
x1(n) x1(n) + x,(n)
@ 4
X;(n) X(N)
x1(0) =x(0)  x,(0) = x(4)
(1) =x(1)  x(1) ==x(5)
x1(2) = x(2) x,(2) = x(6) p =
63 =x3) x,3) = 2(7) *2 (1) [x1 () — %, (W)W
a o 9 a+b
XQk+1) =[x,(k) —x,(R)]WgE,  forda<k<7
b ® & n
www.iafhmanuprasad.com [a — b]Wy



Decimation in Frequency (DIF)

Steps to follow

Step 1 : Find the number of input samples (N)

Step 2 : input sequence in normal order Revised
samples

Input Binary Bit-reversed
Step 3 : Calculate the number of stages (M = log, N)

Step 4 : Calculate the number of max butterflies in stage (N/2)
Step 5 : Calculate the twiddle factor

Step 6 : Evaluate the N point DFT using butterfly diagram
Step7 : The DFT output is in bit-reversed order

2-point
DFT
4-point
DFT
2-point
DFT
8-point
DFT
2-point
DFT
4-point
DFT
2-point
DFT
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Decimation in Frequency (DIF)

Q) Find the DFT of a sequence x(n) = {0, 1, 2, 3} using DIF algorithm

Solution
Step 3 : Calculate the number of stages (M = log, N)

Step 1 : Find the number of input samples (N)

N=4 M =log, N =log,4

Step 2 : input sequence in normal order M=2

Step 4 : Calculate the number of max butterflies in stage

Input

N
2

Yww.iammanuprasad.com



Decimation in Frequency (DIF)

Step 5 : Calculate the twiddle factor

Nt
k:W t=0,1,2..2Mm _1
(M=2’m21) (M=2,m:2)
t=20,1 t=0
for t=0
| — Nt _ 4.0
Nt 4.0 T 2M-m+l T ol
k= oM-m+1 92
wpo = G
for t=1
B 4_1 L Wl = e(_ﬂTn)'z = e Jm = cos(m) — j sin(m)
- 3
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Decimation in Frequency (DIF)

Step 6 : Evaluate the N point DFT using butterfly diagram

x(n) ={0,1, 2,3}

Stage 1 Stage 2

0+2=2 2+4=06 X(0)

x(0) =0 —e— ® ”
1+3=4 (2—4)1 =2 X(2)

X(l) =1 Fy ® ®
(0—-2)1=-2 —2+2j X(1)

x(2) =2 @ ® °
x(3) =3 (1-3)—j=2j (-2 = 2= -2 —2j 24€)

L @ @

X(k) =1{6,-2+ 2j,-2,-2 — 2j}

www.iammanuprasad.com

Wy
¢ " [a - bW
Input Binary i 5

Step7 : The DFT output is
in bit-reversed order



Decimation in Frequency (DIF)

Q) Find the DFT of a sequence x(n) = {1, 2, 3, 4, 4, 3, 2, 1 } using DIF algorithm

Solution

Step 1 : Find the number of input samples (N) Step 3 : Calculate the number of stages (M = log, N)

M =log, N =log,8
Step 2 : input sequence in normal order 82 52

M=3

Input Binary Bit-reversed

samples

Step 4 : Calculate the number of max butterflies in stage

1v_8_4
2 2
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Decimation in Frequency (DIF)

Step 5 : Calculate the twiddle factor

Nt
k= M—m+1

Stage =1 (M=3m=1)
t=0,123

for t=0

8.0
k=?=0

for t=1

8.1
k=?=1

t=20,1,2,..

2M-m _ 1

Stage =2

(M =3,m=2)

t=0,1

for t=0

8.0
= ?

for t=1

w.iammanuprasad.com

)

I=_r - —
N e

B70%1 — j0.7071
03

7071 — j0.7071

W80 == 1
Wg = —j
we =1




Decimation in Frequency (DIF)

W?'L
Step 6 : Evaluate the N point DFT using butterfly diagram '
x(n) =1{1,2,3,4,4,3,2,1} - = 3
[a — b]Wy'
Stage 1 Stage 2 Stage 3
x(0) =1 1+4=5 54+5=10 10 + 10 = 20 ()
o- -& ® o
-@ o & ®
_ - 5—-5) =0
x(2) =3 3‘+2 5 .( ) o A 0 X(2)
(5—5) =0
x@)=4 441 - » o’ X(6)
_ 4 = — —3—] —5.82 — j2.414
x(4) = 4 (1—4) 3 . . o j X(1)
(2-3)
x(5) =3 —0.707 + j0.707 —2.828 —j1.414 —0.172 —j0.414 X(5)
- > ® ®
NOEY: -2 /= ~3+) . o= 0:L72 = 0414 X(3)
~ ~ Step7 : The DFT output
-1 is in bit reversed order
_ _ i 2.828 — j1.414 _ ;
x(7) =1 \, 2.121 —j2.121 . Jj . . 5.828 + j0.414 X(7)

X(k) = {20, —5:82 2l 050172 — j0.414,0,—0.172 — j0.414,0,—5.828 + j0.414 }



IDFT Computation using Radix -2 FFT algorithm

The inverse DFT of an N-point sequence X(k), for k=0,1,2,..., N-1

*

1 N-1
x(m) = z X* (kywyk
k=0

Q) Find the IDFT of the sequence X(k) = {10, -2+2j, -2, -2-2j} using DIT algorithm

Solution
Step 1 : Find the number of input samples (N)

Step 3 : Calculate the number of stages (M = log, N)

N=4
M =log, N =log,4
Step 2 : Bir reversal

M=2
Input Binary Bit- Revised
reversed | samples Step 4 : Calculate the number of max butterflies in stage
N_4_,
2 2
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Step 5 : Calculate the twiddle factor

Nt

=-m  t=012.2""1-1
Stage =1 (M =1)

t=0

Nt 40

K= = =0

IDFT Computation using Radix -2 FFT algorithm

Stage =2 (M =2)
t=0,1
for t=0
4.0
k = ? — 0
for t=1
4.1
k = ? =
A e(_joH)'z =g~ ™ = cos(m) — j sin(m)
W4l ==
| www.iammanuprasad.com

} Step 6 : Find the conjugates of X(k)

X(k) = {10, -2+2j, -2, -2-2j}

X*(k) = {10, -2-2j, -2, -2+2j}




IDFT Computation using Radix -2 FFT algorithm

a » . a+ bWy
Step 7 : Evaluate the IDFT using butterfly diagram
X*(k) =1{10, —2-2j, =2, —2+2j} , W
* * a— bW,y
Stage 1 Stage 2
10+ (—2%1) =38 B+ (—4x1)=4 x*(0)
x(0) = 10—-e— o - °
10 — (=2 % 1) = 12 12+ (—4j x—j) = 8 x*(1)
x(2) =-2 Py ® L ®
x(1) = -2 -2/ (—2-2))+(—2+2j).1=—4 8—(—4%1)=12 x*(2)
® o 4
Step8 : The output is in
normal order and divide
’ it with N
x(3) = —2 + 2j 12 — (—4j % —j) = 16 x"(3)
L 8 ®

(-2 - Zj).— (=2+4+2j).1=—-4j

x*(n) = %{4, 8,12,16} x(n) ={1,2,3,4}
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IDFT Computation using Radix -2 FFT algorithm

Q) Find the IDFT of the sequence X(k) = {7, 2, 3, 1+j} using DIF algorithm

Solution

Step 1 : Find the number of input samples (N)

Step 3 : Calculate the number of stages (M = log, N)

Step 2 : Bit reversal

Bit- Revised M =2
reversed samples

Input Binary
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IDFT Computation using Radix -2 FFT algorithm

Step 5 : Calculate the twiddle factor

Nt
k=m t=0,1,2,..2Mm _1

Stage =1 M=2m=1)

t=0,1
for t=0
4.0
k = ? =
for t=1
4.1
p— ? —_—

W41 =—j

Stage =2 UEVRIEY))

t=0
Nt 4.0
k= == =0
e 21

www.iammanuprasad.com

Step 6 : Find the conjugates of X(k)

X(k) = {7, 2, 3, 1+j}

X*(k) = {7, 2, 3, 1-j}



Decimation in Frequency (DIF)

Step 7 : Evaluate the N point DFT using butterfly diagram
X*(k) =17 2 3, 1}

Stage 1 Stage 2
74+3=10 10+3—-j=13—j X(0)
x(0) =7 — o -® o

; ; ) : X(2)

2+1—j=3— 10—-B3—j))1=7+

x(1) =2 — o . p £ B-0) !
7-3).1=4 4+(1-j))1=5—j X(1)

() =3 ¢ ) . .( (1-)) j
o 1 i : X(3)

@ =1-j . £4 (1-/))1=3+;

L
2-A-D)-j=1-j

1
x*(n) =Z{13 —i5-47+j,3+j}

www.iammanuprasad.com

Wy
* " [a- blWy
Input Binary i 5

Step8 : The output is in
normal order and divide it
with N



Application of FFT

Efficient computation of DFT of two real sequences

Let x,(n) and x,(n) are two real sequences of length N and let x(n) be a complex values sequence defined as x(n) =x,(n)+jx,(n)

Now find the DFT of the sequence x(n) which is linear

X(k) = X1(k) + jX, (k)

The sequences x,(n) and x,(n) can be expressed in terms of x(n) as

* x(n) — x*(n)
x,(n) = i -;x () x2(n) = 2

Then the DFT of x,(n) and x,(n) are

1 1
X1(k) = E{DFT[x(n)] + DFT[x*(n)]} X (k) = z—j{DFT[x(n)] — DFT[x*(n)]}
From conjugation property of twiddle factor

DFT 1 1

x*(n) = X*(N — k) X, (k) = E{X(k) +X'(N—-k)}  Xyk) = Z—j{X(k) — X*(N — k)}
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Q) Find the DFT of two sequence x,(n) = {1,3,1,2} and x,(n) ={2,5,1,3}

Solution

x(n) =x;(n) + jx,(n) Forn=0,1,2,3
Now find the DFT of the sequence x(n) using DIT or DIF method

x(n) ={1+2j,3+5j,1+j,2+3j}

x(n) ={1+2j,3+5j,1+j,2+ 3j}

Stage 1 ) Stage 2 7+ 11j X(0
2(0) = 1+ 2 2+8 ! o
. v
_ o X(2)
(1) =,3 + 5 St T
S @
) y) X1
x(2)=1+]__ 4 — .
x(3) =2 + 3j —2+72j A6
& ° ®
2—j

www.iammanuprasad.com

a - > a+b
Wy
b . *— [a— bW
Input Binary i o

X(k) ={7 +11j,2,-3 - 5j, -2 + 2j}



X(k) = {7 +11j,2,—-3 — 5], =2 + 2j}

Now we have to calculate X; (k) and X,(k)

1
X1(0) = 5{X(0) + X"(4 - 0))

1
=§{7+11j+7—11j} =7

1
Xi(1) = 5 {(X(1) + X" - 1)}

1
=2+ (2-2)) =

1
Xi(2) = 5 {(X(2) + X" (4 - 2)}

= %{—3 —5j+ (=3+5/)} =-3

1
Xi(3) = 5 (3) + X" (4 - 3))

1
=s{-2+2j+ () j

r‘f'l r .'I'.' :I ==

1
X, (k) E{.J{U{ )+ X"(N — k)}

1

—{X(k) —X"(N —k)}

2

1
X2(0) = Z—j{X(O) —X'(4-0)}

1
= —{7+11j—7—11j} =
2].{ + 11j j} =11

1
X (D) = Z—j{X(l) - X'(4-1)}

1
=2—j{2—(—2—2f)} =-2j+1

1
X2(2) = Z—J.{X(Z) —X'(4-2)}

1 . ,
=375 (=345 =5

1
X2(3) = Z—j{X(3) - X'(4-3)}

~ar2i—p =2j+1

www.iangnanuprasad.com




Application of FFT

Let g(n) is a real valued sequences of 2N points.

To find the 2N point DFT from N point DFT , we divide the
sequence to two

x;(n) = g(2n) x,(n) = g(2n+ 1)

Now follow same as the DFT computation of two real sequence

1 1
X, (k) = Z{X (k) + X*(N — k)} Xz(k)=2—j{X(k)—X*(N—k)}

Finally we must express the 2N point DT in terms of two N point
DFTs

N-1 N-1
Gk = ) g@uWE+ ) g@n+DWG
n=0 n=0

N-1 N-1
= Z X1 (n)szAT/lk + Wsz z X2 (n)szz\T/lk
n=0 n=0

www.iammanupgrasad.com

N-1

N-1

G0 = ) W+ Why ) %W~

n=0

n=0

Wherek =0,1,2, ...



Q) Find the DFT of the sequence x(n) ={1,3,7,2,1,2,1,3} using 4-point DFT

Solution x;(n) ={1,7,1,1,}
x(n) =x,(n) +jx,(n)

Now find the DFT of the sequence x(n) using DIT or DIF method

x,(n) = {3,2,2,3}

x(n) ={1+3j,7+2j,1+2j,1+ 3j}

x(n) ={1+4+3},7+2j,1+2j,1+ 3j}

Stage 1 . Stage 2 10 + 10j X(0
2(0) = 1+ 3j 2+ : -
o -& v
, ~ X(2)
x(1)=7+2j 8.+ J o > °
, . —1-75j X(1)
x(2)=1+42j é ® J o ®
x(3) =1+3j 1+7j X(3)
o ® 8. ®
—1-6j
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a - > a+b
W
b . *— [a— bW

X(k) = {10 + 10j, -1 — 5j, 6,1 + 7j}



X(k) = {10 + 10j,—1 — 5j,—6,1 + 7}

Now we have to calculate X; (k) and X,(k)

1
X1(0) = 5{X(0) + X"(4 - 0))

1
=-{10+10j+10-10j} =10

1
Xi(1) = 5 {(X(1) + X" - 1)}

1
=>{-1-5/+1-7j} = —¢]

1
Xi(2) = 5 {(X(2) + X" (4 - 2)}

1
=5{-6+(-6)} = —6

1
Xi(3) = 5 (3) + X" (4 - 3))

1
=§{1+7j+(—1+5j)} =6j

1
X, (k) E{.J{U{ )+ X"(N — k)}
1

xlg.f..-;l:ﬁ{x-;&-) X*(N —k)}

1
X2(0) = Z—j{X(O) —X'(4-0)}

1
— 2—j{10+10j—(10—10j)} =10

1
X (D) = Z—j{X(l) +X'(4-1)}

1
=2—j{—1—5j—(1—7j)} =1+

1
X2(2) = Z—J.{X(Z) +X*(4-2)}

1
e 2—].{—6 — (=6} =0

1
X2(3) = Z—j{X(3) - X'(4-3)}

=1{1+7j—(—1+5j)} =1—j
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For k=3
X(3) = X1 (3) + WgX,(3)

= 6j +[1 -] [\/2—1\/2] = —V2+6j

Here 2N =8 so,
For k=0
X(0 +4) = X1(0) — Wg'X,(0)
For k=0 =10-1.[10] =
OEPAOERZI. A Fork=1

= _ 1
= 10+1.[10] =20 X(A1+4 =X (1) - Wy X (1)

——6]—1+][ —j ] = —V2 - 6j
For k=1 V2 V2
For k=2

X(1) = X, (1) + WgX,(1) X(2+4) =X,2) - WgX,(2)

1
= —6j + 1+][ —j—] =2 -6j = —6 — 0[—j] =—6
V2 V2 For k=3

For k=2 X(B+4)=Xx,3)-WX,(3)
X(2) = X;(2) + WgX,(2)
= —6+ 0[] = —6

=6j —[1—/] [\/2—]\/2] =2 + 6]

L 4

X(k) = {20,¥2 — 6j,—6,—V2 + 6j,0,—V2 — 6j, —6,V2 + 6/}
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MODULE 3 Finite Impulse Response (FIR) Filters

 What s a Filter?

Any medium through which the signal passes, whatever its form, can be regarded as a filter.

However, we do not usually think of something as a filter unless it can modify the signal in some way. For example,
speaker wire is not considered a filter, but the speaker is

A digital filter is just a filter that operates on digital signals, such as sound represented inside a
computer.

It is a computation which takes one sequence of numbers (the input signal) and produces a new
sequence of numbers (the filtered output signal).

Types of Filter

Low-pass Filter

High-pass Filter Band-pass Filter

Band-stop Filter
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Finite Impulse Response (FIR) Filters

* It is one of two main types of digital filters used in DSP applications.

» FIR filter gets its name because the same number (finite) input values you get going into the filter, you get coming out of
the output

» The design methods of FIR filter based on approximation of ideal filter

* Properties of FIR filter
» Require no feedback: This means that any rounding errors are not compounded by summed iterations. The same
relative error occurs in each calculation. This also makes implementation simpler.

» Inherent stability: This is due to the fact that, because there is no required feedback, all the poles are located at the
origin and thus are located within the unit circle (the required condition for stability in a Z transformed system).

» Phase Issue: can easily be designed to be linear phase by making the coefficient sequence symmetric; linear phase,
or phase change proportional to frequency, corresponds to equal delay at all frequencies. This property is
sometimes desired for phase-sensitive applications, for example data communications, crossover filters, and

mastering.
« The main disadvantage of FIR filters is that considerably more computation power
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Finite Impulse Response (FIR) Filters

A discrete-time FIR filter of order N. The top part is an N-stage delay line with N +
1 taps. Each unit delay is a z* operator in the Z-transform notation.

The output y of a linear time invariant system is determined by convolving its input
signal x with its impulse response b.

For a discrete-time FIR filter, the output is a weighted sum of the current and a
finite number of previous values of the input.

The operation is described by the following equation, which defines the output
sequence y[n] in terms of its input sequence X[n]:

y(n) = box[n] + byx[n — 1] + byx[n — 2] + ... + byx[n — N]

N—-1
y(m) = ) bx(n = k)
k=0

* x(n) : is the input sequence

* y(n) : is the output sequence

* by : filter coefficients that make up the impulse response
N: is the filter order
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FIR Impulse response

N-1 N-1
y) = Y hx(n—k) k()= ) hdln -]
k=0 k=0

The Z-transform of the impulse response yields the transfer function of the FIR filter

H(z) = Z{h(n)}
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Linear phase FIR filter — Symmetric Impulse response

Let h(n) be an impulse response of a system then its Fourier transform can
be expressed as

N-1
H(ej“)) = Z h(n)e=/®n
n=0

Since H(el“") is a complex value for linear phase FIR filter , then we can
represent it in terms of magnitude and phase

(&) = £ (o) eI
Equating (1) & (2)

3 hwpeton = 4{(es)]e e
n=0

e 7% = cosf —jsin@

N-
z h(n)[cos wn — j sin wn] i|H(ej“’)|[cos aw — j sin aw]

Equating sin and cos terms

=2

-1
h(n)[coswn] = i|H(ej“’)|[cos aw]

1Y%

D
=

h(n)[sinwn] = + |H(ej“)) | [sin aw]

S
Il
o

YN h(n)[sin wn] _ sinaw
Y N—3 h(n)[cos wn] ~ cos aw

N- N-1
Z h(n) sin wn cos aw = Z h(n) cos wn sin aw
=0 n=0

2

z h(n)[cos wn sin aw — sin wn cos aw]

N-
Z h(n)[sin(a — n)w] =0

The above equation will be zero when

sin(A — B) = sinA cos B — cos Asin B

h(n) = h(N —1—n)

N-1

adQ=——"

2
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Linear phase FIR filter — Symmetric Impulse response

h(n) = h(N —1—n)

N-1
o0 =—

2

From the equations and the conditions we can conclude that FIR filter will have
constant phase and group delays when the impulse response is symmetrical about a = %

® 3 0 3 ® 3
N 2 2.9 2
1
T [ h h HI {
"0 12 34 5 6 ' 0 1 2 3g8so
_ 6—1
N-1 7-1 - -
a=—— =5 2

h(n) =h(N —1—n) h(n) =h(N —1-—n)

= h(7-1-5) ~p=il=5)
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Linear phase FIR filter — Antisymmetric Impulse response

Let h(n) be an impulse response of a system then its Fourier transform can
be expressed as

oy - iom YN h(n)[sin wn] _sin(B — aw)
H(e’™) = 7; hln)e YN-Lh(n)[coswn] cos(B — aw)

Since H(el*" is a complex value for linear phase FIR filter , then we can | ¥=1 N-1
represent it in terms of magnitude and phase. If only constant group delay z h(n) sin wn cos(ff — aw) = Z h(n) cos wn sin(f — aw)
Is required =0 =0

H(eJ) = +|H(e®) ]~ B-aw) -
Equating (1) & (2) 0= z h(n)[cos wnsin(f — aw) — sin wn cos(f — aw)]
N-1 n=0
Z h(n)e jon = ilH(eije—j(ﬂ—aw) - sin(A — B) = sinA cos B — cos Asin B
T e”/? = cos —jsing h()[sin(8 — (¢ — mw)] = 0
. =0
h(n)[cos wn — j sinwn] = £|H(e/®)|[cos(B — aw) — j sin(f — aw)] b
n=0 B = r The equation will be zero when
Equating sin and cos terms 2
N-1
N z h(n)[cos(a —n)w] =0 h(n) = —h(N — 1
h(n)[cos wn] = i|H(ej‘”)|[cos([>’ — aw)] . B (n) = —h(N-1-n)
n:

=
Il
o
=
I
—_

=
A
N

h(n)[sin wn] = i|H(ej“’)|[sin(B —aw)]

www.iammanuprasad.com
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Linear phase FIR filter — Asymmetric Impulse response

h(n) = —=h(N —1—n)

From the equations and the conditions we can conclude that FIR filter will have
constant group delay and 1= constant phase delay

N-1 _7-1 N-1 6—1
2 a=—— == 2 a=—— =5
[ h(n) = —h(N —1-n) 1T [ h(n) = —h(N — 1 —n)
® ° > =—h(7—1-5) o *—»> =—h(6—1-5
2 3 415 6 0 1 2 314 5 ( )
-1 1
-2 -2
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Frequency response of Linear phase FIR filters

Depending on the value of N and the type of symmetry of filter impulse response sequence
there are mainly 4 types of linear phase FIR filter
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Casel : Symmetrical impulse response and N - odd

h(n) ¢ 3 To arrange the limit we assume
N=7 3
21| 12 When n = %42 Whenn = N — 1
1 1 m=N—-1—n N+ 1
T { X =L =3 L -N-1-m N-1=N-1-m
) ~ N ) n=N-1—-m 2
0 1 213 4

Given h(n) and find the Fourier transform H(ei) Substitute in (1)

N-3

< H(el®) = ZZ: h(n)e /@™ + h(N » 1) e_jw(%) + Z h( Yejo( )
H(ej‘”) — z h(n)e /®n P 2
n=0

N—3

H(elw) Z h(n)e /@™ + h( - 1) —Jw(¥) + Z h(N —1— )e—jw(N—l— )

Now lets split the equation into three parts

N 3 - For symmetric impulse response h(n) = h(N — 1 —n)

H(el®) = Zh(n)e 1“”‘+h( > 1) ﬁ“’(%)_p Z h(n)e jon N—3 N_3
n="02 H(e/®) = z h(n)e~ J“’"+h< 1) ~jo(*3 + Z h(n)e J@WN-1-n)
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N N-3

H(ef“’) z h(n)e /@™ + h(N

e
Taking e ’“\"z / outside

H(ej“’) =g/

Casel : Symmetrical impulse response and N - odd

h(n)[e‘f“’n. ejm(_

h(n)e—jw(N—l—n)

N-1

> )_|_e—jw(N—1—n).ejw(

e (152

N-1

)cosa) }
N-1
2h <T— n) cos wn}
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Casel : Symmetrical impulse response and N - odd

N—-1

_ 2
H(ej“)) = e_jw(T) Z a(n) cos wn
n=1

Where

a(0) = h<N = 1) a(n) = 2h (NT_l— n)

From this we can express the amplitude and phase function

Amplitude Phase
N-1
2 . N -1
|H(ej“))| = z a(n) cos wn LH(G"") = —w (T) = —aw
n=1
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Case?2 : Symmetrical impulse response and N - even

h(n) To arrange the limit we assume
1 [{l m=N—-1-—n N -

) ° T — T ° > a:T = 2.5 n=N-1—-m 2 N-1=N-1-m
0 1 2134 5

Given h(n) and find the Fourier transform H(eiv) Substitute in (1)

N-2
2
e H(el®) = Z h(n)e /on + z h( Ye Tl )
H(ej“)) = Z h(n)e-Jen n=0
n=0
N-3
For symmetric impulse response with even number of samples and , 2 : N-—-1\ _; (M) :
7 joY — —jon Jw —1_ —jo(N-1-n)
centre of symmetry lies between n = ¥ and% H(e®) Z h(n)e thi——]e - Z h(N —1—=n)e
n=0

Then we can split the equation into two parts _
P g P For symmetric impulse response h(n) = h(N — 1 —m)

H(e/?) = z h(n)e /on + z h(n)e J®n H(e/?) = Z h(n)e /@™ + Z h(n)e joW-1-n)
n=0 nz% n=0 n=0
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Case?2 : Symmetrical impulse response and N - even

N-2 N-2

2 2
H(el®) = Z h(n)e /o™ + Z h(n)e-/oN-1-n) Let o When n = 0 When n = %
= k=—=—-—n
» 2 N N-2 N
Taking e 19(55) outside N 0=7—*k 3k
N-2 n=-—-k
N—-1 & N—-1 N—-1 2
H(ej“)) = e_jw(T) Z (n)[e_jwn_ ejw(T) + e—ja)(N—l—n). ejw(T)]
n=0
N-2 . (N—1 1
Coven | 2 g (N1 H(ei®) = ¢~1(57) Zz( ) _Z
:e-m<u>{z ootz >+ef<m<z>>1} =BT (e -
n=0

o P
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Case?2 : Symmetrical impulse response and N - even

2

N
) . (N—-1 2 1
H(e/®) = e_]w(T) b(n) cos w (n — —)

Where
N
b(n) = 2h (5 — n)

From this we can express the amplitude and phase function

N
. & 1 _
|H(e/®)| = ;b(n) COS W <n — E) ¢H(e/®) = —w (%) = —qw
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Case 3 : Antisymmetrical impulse response and N - odd

In the similar way of symmetric, we get for antisymmetric as

N-1
| ju(N1) In :
H(ef‘“) =e /27 )e2 Z c(n) sin w(n)
n=1
Where
N -1
c(n) = 2h <T — n)

From this we can express the amplitude and phase function

Amplitude Phase
N-1
. . N-1
|H(e1‘“)| = z c(n) cos w(n) LH(eJ‘“) =g— <T>w =g_aw
n=1
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Case 4 : Ant symmetrical impulse response and N - even

In the similar way of symmetric, we get for antisymmetric as

N
) o N—1y jm )& 1
H(ef‘”) = e_]w(T)e% Z d(n) sinw <n _E>
n=1

Where
N
d(n) = 2h (E — n)

From this we can express the amplitude and phase function

AUE LG Phase
N
. 2 1 oy T (N=1\  m
|H(ef“’)|=Zd(n)sinw<n—§> LH(e )=§— — @ =5~ aw
n=1
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Casel : Symmetrical impulse response and N - odd

SUMMARY

N-1

_ 2
H(ej“’) = e_jw(y) Z a(n) cos wn

n=1

a(0) = h(N 2_ 1) a(n) = 2h (g— n)

Where

Case? : Symmetrical impulse response and N — even

Case 3 : Ant symmetrical impulse response and N - odd

N
_ N1y | & 1
H(e/®) = e_]w(T) b(n) cos w <n ——)
) 2

Where
N
b(n) = 2h (5 — n)

Case 4 : Ant symmetrical impulse response and N - even

N—-1

. . (N=-1\ jm &
H(ef‘”) = e_]w(T)eT c(n) sin w(n)

Where

(N1
c(n) =2 (T—n>

N
_ C(N-1\ jm ) & 1
H(ef“)) = e_Jw(T)e% 2 d(n) sin w (n _E)
n=1

Where
N
d(n) = 2h (E — n)
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Design of linear phase FIR filter

Why do we need a filter?

A notch / band
Sensor AtoD stop filter (50-
converter Hz)

Frequency response of a practical lowpass filter

Passband Ripple

Transition Band
Passband

Stopband

Stopband Ripple |
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Diqital filter design

1. Determining specification : we need to know how strong the noise component is relative to the
desired signal and how much we need to suppress the noise. This information is necessary to find
the filter with minimum order for this application.

2. Finding a transfer function : we need to find a transfer function H(z) which will provide the
required filtering.

3. Choosing a realization structure : there are many systems which can give the obtained transfer
function and we must choose the appropriate one.

4. Implementing the filter : You have a couple of options for this step: a software implementation
(such as a MATLAB or C code) or a hardware implementation (such as a DSP, a microcontroller,
or an ASIC).
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Design of linear phase FIR filter : window method

Suppose that we want to design a lowpass filter with a cut off
frequency of w,,given frequency response

1 lw| < w
H = ’ ¢
a(w) {O , otherwise

To find the equivalent time-domain representation, we calculate
the inverse discrete-time Fourier transform

T
1 )
hy(n) = - fHd(a))ef“’ndw
—TT

Wc
= i el dw
21
—i,
needs an infinite number of input samples to
sin(nw,) perform filtering and that the system is not a causal system. The
e solution will be to truncate the impulse response and use,
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Design of linear phase FIR filter : window method

hy(n) Non causal system causal system & linear

but the system is delayed by n = %

There for considering an applied shift to hy(n) and then multiplying with
window function W(n)

h(n) = hy <n — ) * W(n)
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Design of linear phase FIR filter : window method

Designed FIR Filter
— — —|deal Filter

Frequency response of the filter designed by a rectangular window
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Rectanqular window

Design of linear phase FIR filter : window methods

Hanning window

Hamming window

—-(N-1) (N-1)
Wem)={1 —5 Sn=
0 otherwise
(0] ¢
_J1 0n<N
Wrl) = {0 otherwise

G S 2mn —(N—1)< <(N—1)
Wy (n) = 4 .5 cos N_—1/" > <n< >
0, otherwise
or
05— 05cos(2) 0<n<n
WR(Tl) _ .0 — U.0 COoS T 7 sSn=s
0, otherwise

0.54 — 0.46 ann w1
Wy () =4 46 cos N_1/" > <n< >
0, otherwise
0] 8
0.54 — 0.46 2mm 0<n<N
WR(Tl) — . — U. (o{0 T 7 sSn=s

0, otherwise

Hanning window

Hamming window
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Design of linear phase FIR filter : window method

Design procedure

1. Choose desired frequency response of the filter Hd(ef‘”)
2. Take the invert Fourier transform of H;(e/%) to obtain hy(n)

3. Choose a window sequence W(n) and multiply it with hyz(n) to convert
infinite duration impulse response to finite duration impulse response

h(n) = hg(n) * W(n)
4. The transfer function of the filter is obtained by taking Z-transform of h(n)
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Q) Design an ideal lowpass filter with frequency response Hy(e/0) ={1 for—zse=3 X
. . 0 otherwise 1
find the value of h(n) for N=11 find H(2).

Solution < 7 >
We can determine the desired impulse response h;(n) by taking inverse 2 2
Fourier Transform

% Since for n=0 the equation becomes infinity so lets
1 . apply limit
ha(n) = — fl.ef‘""dw
2r ). for n=0
2 mn mmn
5 = lim = lim = —
27t]n e 2 —e 2 " no0 nw 1m0 nz_”z 2  sinn
lim = 1
for n=1 T n-0 n
mm . T sin
2 sin—- __ 2 =2 =0318 =h(-1)
27T]n[ j sin— 5 _ 2 h(1) s -
nr
for n=2 sinm
h(2) = > =0 = h(-2)
Truncating hy (n) to 11 samples n
for n=3 Sin3_7T _ (=3)
2 =— =-0.106 =h(-3
h(3) =
mn ( ) 3 3n
.2 for n=4 4
— A U L A
h(n): ni fOT——SSnSS sin— _ _ .
0 otherwise T
for n=5 , 1
S = —  =10.0636 = h(-5) :
h(S) — 2 — 5 - www.tammanuprasad.com
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Now lets find the transfer function of the filter by taking Z Transform

(%) 5
H(Z) = z h(m)Z ™ = Z h(n)Z ™
=)
= h(=5)Z° + h(—4)Z* + h(-3)Z3 + 722+ h(-1DZ*+h(0) +h(1)Z7* +

5
— h(0) + z h(m)[Z" + Z]

=05+0318(Z' +Z )+ —0.106(Z% + Z73) + 0 + 0.0636(Z° + Z~5)

The transfer function of the realizable filter is

1@ =z

= 775[0.5 + 0.318(Z* + Z™1) — 0.106(Z3 + Z~3) + 0.0636(Z° + Z~5)]

H'(Z) = 0.0636 — 0.106Z72 + 0.318Z~* + 0.5Z7> + 0.31827% — 0.106Z~8 + 0.0636Z~1°

Z724+h(3)Z3+h(4)Z*+h(5)Z~5
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Design of linear phase FIR filter : window method

Design Steps

Plot the desired frequency response Hy(e/)

Determine the desired impulse response hy(n) by taking
the inverse Fourier transform of H, (ef“’)

hy(n) = 1.e/°"dw

N
E) | =
|
Nlﬁ\n\:m

Find the value of h;(n) forall n’
Choose a window sequence W (n) and multiply it with
h,(n) to get impulse response h(n)

h(n) = hq(n) * W(n)

Take the Z — Transform of h(n)to get transfer function of the
filter which is given and find coefficients

1@ =z 0
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Hale™)
Q) Design a linear phase FIR low pass filter using rectangular window by taking 7 samples of 1
window sequence and with a cut off frequency w, = 0.2m rad/sec
or
Q) Design a Iint;ar phase FIR filter low pass filter with frequency response )y —027 0.2 g
; 1 for—w,<w=<w
H;(el?) = ¢ =" = " where w, = 0.2 and N=7
a(e’®) {0 otherwise De &
Solution Since for n=0 the equation becomes infinity so lets
: L apply limit
We can determine the desired impulse response
h4(n) by taking inverse Fourier Transform for n=0
0.2m ~ sin0.2nn _ sin0.2wn
1 . hd(O) = IIIT(I)T = Tlllr%Toz = 0.2
= — ] Jeii n-— - — 0.
hd (n) o f l.e dw 0.2 .
-0.2m lim =1
n-0 n
1 . . for n=1 :
— jo.2mn __ ,—jo0.2mn - sin 0.2
2mjn le ¢ ] hy(1) = — 0187 = hy(—1)
_ 1 Dism0gm - sin 0.2nn
2mjn J ' T am for n=2
sin 0.212
Truncating hy (n) to 7 samples he(2) = —— = 0151 = hq(=2)
sin 0.2nn
hy(n) = nm for=-3<n<3 for n=3
sin 0.213
0 otherwise hq(3) = T 37 = 0.1009 = hg(=3)
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YouTube - IMPLearn FIR FILTER DESIGN USING

Now using rectangular window sequence W(n) and multiply h;(n) with it to get the impulse

response h(n)
: : . : -(N-1) (N-1)
(1 o<n<3 Since @ = 0 we get a non causal filter coefficient symmetrical about n=0 We(n) =41 5 Sns
Wr(n) = {0 otherwise so h(n) = h(-n) 0 otherwise
3
for n=0 h(O) = hd(O)WR(O) =0.2 H(Z) — h(O) + z h(n)[zn + Z—n]
n=1

= 1) = hq(1).Wr(1) = 0.187 = h(-1
=ty 7.(1) =y (1).: (R —1) = 0.2 + 0.187( )+ 0.151( )+ 0.1009(Z3 + 7~%)

= h(2) = h;(2).Wr(2 = 0.1514 = h(-2
e =2 (2) a(2)-Wr(2) =2 The transfer function of the realizable filter is
forn=3  h(3) = hy(3).Wx(3) = 0.1009 = h(-3) H'(Z) = -5 H(Z)

= 773[0.2 + 0.187( ) 4+ 0.151¢( ) + 0.1009(Z3 + Z73)]

h(n) = [0.1009,0.1514,0.187,0.2,0.187,0.1514,0.1009]
=0.1009 + 0.151Z71 + 0.187Z72 + 0.2Z73 + 0.187Z7% + 0.151Z >

Now lets find the transfer function of the filter by taking Z Transform +0.1009Z-°
w
2 3
H(Z) = Z h(n)Z™ = z h(n)Z ™
= h(-3)Z3 + 7% + Z' + h(0) + A

www.iammanuprasad.com
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FIR FILTER DESIGN USING

Q) Design a linear phase FIR high pass filter with frequency response

1 for%§|w|§n

Hy(e®) =
d(e ) 0 for|w|<z

Solution

We can determine the desired impulse response
h4(n) by taking inverse Fourier Transform

T
hg(n) = L JHd(ej“)).ej“m dw
21

T

~a T
1 ) )
= — f 1.ef“mda)+j1.ef“mda)
2T
TL'
1 e]wn e]wn T
SNl N e
=—_? -eT—e_mn—(eﬂm e 1”")]
2njn L
B S SO
= 2l j sin ] j sinnm

. . nm
SIn N — SIDT

hg(n) = -

~ Find the value of h(n) for N=11 and find H(z). Use rectangular window

Truncating h;(n) to 11 samples

Since for n=0 the equation becomes infinity so lets apply

limit
for n=0
mm
" o | sintn . sin—- 1 3
d()_nlir(l) nmw "l_rgnfél 21_Z 4
for n=1
sinn—sinz
ha(1) = 4 =-0225 =hy(-1)
for n=2
2T
SIN 27— SINZ= = (1591 = hy(—2)
hd(2)= 2
T
for n=3
N
SINST = SINZ= = 0,075 = hy(—3)
hd(?’): 3
T
for n=4
sin4n—sin% =0 = hy(—4)
4) = - B
hd( ) 41
for n=5
sin5ﬂ—sin% =0.045 = hy(=5)
hd(s)z . d

5t

Hd(ej“’)

A
1 1
- T o r n i

4 4
_sinn
lim —
n-0 n
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Now using rectangular window sequence Wx(n) and multiply h;(n) with it to get the impulse

response h(n)

_J1 0<sn<s Since o = 0 we get a non causal filter coefficient symmetrical about n=0
Wr(n) = { : ~(N-1 N-1
R 0 otherwise so h(n) = h(-n) W () = {1 ( - ) <n< ( )
forn=0  h(0) = hy(0).WR(0) = 0.75 3 4 g wise
H(Z) = h(0) + z h(m)[Z" + Z]
forn=1  h(1) = hy(1).Wz(1) = —0.225= h(-1) =
forn=2  h(2) = he(2).We(2) =-01591=h(-2) — 0.75 — 0.225( ) — 0.159( ) — 0.075(Z3 + Z273)
5 =5
forn=3  h(3) = hy(3).Wx(3) =—0.075 = h(=3) +0.045(2° +27°)
for n=4 h(4) = hy(4).Wg(4) =0=h(—4) The transfer function of the realizable filter is
N—-1
forn=5  h(5) = hy(5).Wx(5) = 0.0450 = h(—5) H'@) =20
= 77°[0.75 — 0.225( ) — 0.159( ) —0.075(Z% + Z73)

h(n)
= [0.0450,0,—0.075,—0.1591, —0.225,0.75,—0.225 — 0.1591
— 0.0750,0.0450]

Now lets find the transfer function of the filter by taking Z Transform

S 5
H(Z) = Z h(m)Z™ = z h(n)Z~"
= h(=5)Z> + h(—4)Z* + h(-3)Z3 + 7% + A

+ h(0) + Z 1+ Z72+h(3)Z3+h(4)z*
+ h(5)Z~5

+ 0.045(Z° + Z7°)]

= 0.045 — 0.075Z7%2 — 0.159Z73 — 0.225Z % + 0.75Z7°> — 0.225Z°
—0.1591Z77 — 0.075Z78 4+ 0.0457°10
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FIR FILTER DESIGN USING

Q) Design a linear phase FIR filter high pass filter with frequency response

1 for%§|w|§n

T

Hy(e®) =
d(e ) 0 for|w|<z

Solution

We can determine the desired impulse response
hg4(n) by taking inverse Fourier Transform

T
hg(n) = L JHd(ej“)).ej“m dw
21

T
1 T
= — f 1.ej“mda)+j1.ej‘””da)
2T
TL'
1 e]wn e]wn T
SNl N e
=—_? eT—e_]m—(eJ”” e 1”")]
2njn L
B S SO
= 2l j sin ] j sinnm

. . nm
SIn N — SIDT

hg(n) = -

Find the value of h(n) for N=11 and find H(z). Using Hanning window

Truncating h;(n) to 11 samples

Since for n=0 the equation becomes infinity so lets apply limit

for n=0
" o | sintn sin—- 1 3
d()_nlir(l) - lr%nfll :1—Z T4
for n=1
sinn—sinz
ha(1) = 4 =-0225 =hy(-1)
for n=2
o 2T
SIN 27— SINZ= = (1591 = hy(—2)
hd(2)= 2
T
for n=3
N
SINST = SINZ= = 0,075 = hy(—3)
hd(?’): 3
T
for n=4
sin4n—sin% =0 = hy(—4)
4) = - B
hd( ) 41
for n=5
sin5ﬂ—sin% =0.045 = hy(=5)
hd(s)z . d

5t

Hd(ej“’)

A
1 1
T, T o« "

4 4
_sinn
lim =1
n-0 n
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-(N-1) (N-1)

<n<

otherwise

2

Since « = 0 we get a non causal filter coefficient symmetrical

about n=0 so h(n) = h(-n)

Wyn(n) =

05 + 0.5 cos 2
. .0 COS 10
0

0<n<5

otherwise

Wyn(0) = 0.5+ 0.5 =1

TC

Wy, (1) = 0.5 + 0.5 cos z

09045 = Wy, (—1)

2T
Wy, (2) =05+ 0.5 cos— = 0.655 = Wy, (—2)

3
Wy, (3) = 0.5+ 0.5 cos? = 0.345 = Wy, (—3)

41t
Wy, (4) = 0.5+ 0.5 cos? = 0.0945 = Wy,(—4)

5m
Wy, (5) = 0.5+ 0.5 cos ¢ = 0 = Wy, (—5)
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Now using Hanning window sequence W(n) and multiply h;(n) with it to get the impulse
response h(n)

h(n) = hy(n).Wy,,(n) for —5<n<5 HZ) = h(O) + 25: A2 7
forn=0  h(0) = hq(0). Wy, (0) =0.75(1) = 0.75 =
forn=1  h(1) = ha(1).Wyn(1) = —0.225(0.905) = —0.204 = h(—1) = 0.75 — 0.204( ) — 0.104( ) — 0.026(Z3 + Z73)

for n=2 h(2) = hg(2). Wy, (2) = —0.159(0.655) = —0.104 = h(-2) _ ) ) _
The transfer function of the realizable filter is

forn=3  h(3) = hy(3). Wy,(3) = —0.075(0.345) = —0.026 = h(—3)

et

forn=d  h(4) = hy(4). Wy (4) =0 = h(—4) w2 =z 0

forn=5  h(5) = hq(5).-Wyn(5) =0 = h(-5) = 775[0.75 — 0.204( ) — 0.104( ) —0.026(Z° + Z73)]

h(n) = [-0.026,—0.104,—0.204,0.75,—0.204, —0.104, —0.026]
= —0.026Z7% — 0.104Z73 — 0.204Z~* + 0.75Z7°> — 0.204Z~°

Now lets find the transfer function of the filter by taking Z Transform —0.104Z77 — 0.026Z7°
N—-1
(T) 5
HD= ) h@z™ = ) hmz™"
N—1 -
n=—(3") "
= h(=5)Z> + h(—4)Z* + h(-3)Z3 + 7% + A
+h(0) +h(DZ7 '+ 1(2)Z72+h(3)Z3 + h(4)Z™* _
+ h(S)Z—S WWW.ld"’l"’ldl’lllpl"(lde.COlql
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FIR FILTER DESIGN USING HAMMING WINDOW

Q) Design a linear phase FIR filter high pass filter with frequency response

_ 1 for % <lw|<m
H;(el?) =
d( ) 0 for |w| <z

Solution

We can determine the desired impulse response
hg4(n) by taking inverse Fourier Transform

T
hg(n) = L JHd(ej“)).ej“m dw
21

T

~a T
1 ) )
= — f 1.ef“mda)+j1.ef“mda)
2T
TL'
1 e]wn e]wn T
SNl N e
=—_? -eT—e_mn—(eﬂm e 1”")]
2njn L
B S SO
= 2l j sin ] j sinnm

. . nm
SIn N — SIDT

hg(n) = -

- Find the value of h(n) for N=11 and find H(z). Using Hamming window

Truncating h;(n) to 11 samples

Since for n=0 the equation becomes infinity so lets apply limit

for n=0
mm
" o | sintn . sin—- 1 3
d()_nlir(l) nm "l_rgnfél 21_Z 4
for n=1
sinn—sinz
ha(1) = 4 =-0225 =hy(-1)
for n=2
2T
SIN 27— SINZ= = (1591 = hy(—2)
hd(2)= 2
T
for n=3
N
SINST = SINZ= = 0,075 = hy(—3)
hd(?’): 3
T
for n=4
sin4n—sin% =0 = hy(—4)
4) = - B
hd( ) 41
for n=5
sin5ﬂ—sin% =0.045 = hy(=5)
hd(s)z . d

5t

Hd(ej“’)

A
1 1
T, T o« "

4 4
_sinn
lim =1
n-0 n
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Hamming window

0.54 — 0.46 cos< 2mn ) , _(N—_l) (V-1

< <
N—1 2 ==

0, otherwise

Wy(n) =

Since @ = 0 we get anon causal filter coefficient symmetrical about

n=0 so h(n) = h(-n)

0.54 + 0.46 anm 0<n<5
WH(Tl)= . + 0. COSW SN s

0 otherwise

Wy (0) = 0.54 + 0.46 = 1

1T
Wi (1) = 0.54 +0.46 cos = = 0912 = W (~1)

21T
Wy(2) = 0.54 + 0.46 cos— = 0.682 = Wy(—2)

R¥4
Wy(3) = 0.54 + 0.46 cos? = 0.398 = Wy(—3)

41
Wy(4) = 0.54 + 0.46 cos— = 0.1678 = Wy(—4)

5t
Wy(5) = 0.54 + 0.46 cos? = 0.08 = Wy(-5)
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FIR FILTER DESIGN USING HAMMING WINDOW

Now using Hamming window sequence Wy (n) and multiply h;(n) with it to get the impulse

response h(n)

h(n) = hq(n). Wy (n)

forn=0  h(0) = hq(0). Wy (0)

forn=1  h(1) = ha(1).Wy(1)

forn=2  h(2) = hq(2). Wy(2)

forn=3  h(3) = ha(3). Wy (3)

forn=4  h(4) = hqa(4).Wy(4)

forn=5 " h(5) = hq(5). Wy (5)
h(n)

for —=5<n<5
=0.75(1) =075
= —0.225(0.912) = —0.2056 = h(—1)
= —0.159(0.682) = —0.1084 = h(—2)
= —0.075(0.398) = —0.03 = h(-3)
=0 = h(—4)

= —0.045(0.08) = 0.0036 = h(—5)

5
H(Z) = h(0) + Z hm)[Z" + 277
n=1

= 0.75 — 0.2056(
+0.0036(Z5 + Z75)

) —0.1084(

The transfer function of the realizable filter is

N—-1

1) =2 Conw

= 77°[0.75 — 0.2056(
+ 0.0036(Z° + Z7°)]

) —0.1084(

) —0.03(Z3 + Z773)

) —0.03(Z3 +7Z73)

= [0.0036,—0.03,—0.1084,—0.2056,0.75,—0.2056, —0.1084, —0.03,0.0036]

Now lets find the transfer function of the filter by taking Z Transform

(%) 5
H(Z) = h(n)Z™" = h(n)Z™™
= h(=5)Z> + h(—4)Z* + h(-3)Z3 + 7% + A
+ h(0) + Z 1+ Z72+h(3)Z3+h(4)z*

+ h(5)Z~5

= 0.0036 — 0.03Z272 — 0.1084Z~3 — 0.2052Z* + 0.75Z°
—0.2052Z7—0.1084Z7 — 0.03Z78 + 0003621
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In this method the ideal frequency response is sampled at sufficient number of points these samples are the DFT
coefficients of impulse response of filter. Hence impulse response of filter is determined by taking inverse DFT
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Design of linear phase FIR filter by frequency sampling technique

Q) Design a linear phase FIR low pass filter with cut off frequency of 0.5z rad/sample by taking 11

samples of ideal frequency response

Solution

For digital sampling we are taking the limit as 0 to 2x

Hd (ejw) A

& »
<« »

0] 0.5m T 1.57 2T

Due to symmetricity at (N-1)/2 then there will be an a
exponential term in the expression

1.e J*® ,0<w<05nm
Hd(ej‘”) = 0 ,05m < w < 1.5m
l.e /2@ 151 <w<27
b _N—l _ 11-1
where, a = =

=5

Sampling frequency w;, = % fork=0to 10

for k=0
fork=1
for k=2
for k=3
for k=4
for k=5

H(k)

2T * 0
@o =717
2T * 1
®o =77
2T * 2
@o =717
21 * 3
@o =717
2T * 4
®o =717
2T * 5
®o =717

=|0.18m
= 0.36m
= 0.557

= 0.73m

= 091n

|

Hd(ej“))
A

v

A

—0.57

H(k) =

4

0 1

11]

345678 9 10

0.57
2T * 6
Y=
21 * 7
— =127
“o ="
21 * 8
= = 1457
- 2 119
TT *
= = 1.641
- 21110
wo =" =182m
1
oisag  fork =012
0 ,fork =3to8
_ 52Tk
e 11, fork =910
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N—-1

2 ]
) = % H(0) + 2 z re |H(O) ]

5
..2mwk j2mnk 2tk j2nnk
=== 1+22Re[e_15%e] fln] 1+22Re[e JSAT ¢ 11 ]
2 27k
VIA
11 1+22Re[ej 11 (- 5)]
k=1

1

= L |1 4 2rele/En-9] 4 2pelorEm-9)]]

( .21k

1 21 AT -j5==— ,fork =0,1,2
h(n) = 1[1+2cos<—(n—5))+2cos(ﬁ(n—5)>] H(k) = 4 0 ,fork =3to8
Le_j‘r’T ,for k =9,10
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Now /et s calculate h(n) for n = 0 to 10, using symmetric condition ( h(n)=h(N-1-m) )

1+ 2cos

1+ 2 cos

for n=0
h(0) = —
11
for n=1
h(1) = 1
11|
for n=2
h(2) = 1
11|
for n=3
) —
11
for n=4
h(4) = —
11
for n=5 )

1
h(5) = 11 [1 + 2 cos

1+ 2cos

1+ 2cos

Design of linear phase FIR filter by frequency sampling technique

21 4
1+2cos< (0 — 5)>+2co (1— 0—5)

= —0.054

= 0.3194

2”5 5)) + 2 cos [ 7 ( = 0.4595
1 CoS 11 = V.

for n=6

h(6) = h(11—1—-6) = h(4) = 0.3194

for n=7
h(7) =h(11—-1-7) = h(3)

for n=8

h(8) = h(11 -1 -8) = h(2)

for n=9

h(9) = h(11-1-9) =h(1) = —0.054

for n=10

h(10) = h(11 -1 —10) = h(0)

www.iammanuprasad.com
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10
H(Z) = Z h(n)Z~"
n=0

— 2+ h(DZ7 '+ h(2)Z72%2 + Z34+h(4)Z*+h(5)Z>+h(6)Z7°+ Z77+h(8)Z8+h(9)Z7° + Z~10

H(Z) = 0.0694(1 4+ Z719) — 0.054(Z"1 + Z7%) — 0.1094(Z"2 + Z78) 4+ 0.0473(Z 3 + Z77) + 0.3194(Z~* + Z7°) + 0.45952Z 5

h(6) = h(11—1-6) = h(4) = 0.3194

h(7) = h(11 =1 —7) = h(3)

h(8) = h(11 -1 - 8) = h(2)

h(9) = h(11—1-9) = h(1) = —0.054

n(10) = RO 485 2 Rl
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Q) Using frequency sampling method, design a band pass filter with the following specifications , sampling frequency
F=8000Hz ,cut off frequency f,,=1000Hz, f,,=3000Hz, Determine the filter coefficients for N=7

Solution

For digital sampling we are taking the limit as 0 to 2z
2nfe;  2m1000 _ ™

=2nfT = = =—=0.25 - _2mk o
Wep = 2Tfq = 0 2 m Sampling frequency w;, = = fork=01t06
2nf,,  2m3000 37
w = T = = = = =
c2 fe2 I 3000 2 0.75m for k=0 0, = 2n7* 0 ~ 0
H.(eio) T B 2mx 1 2T % 4
(<) fork=l  wp=— =0.28m | fork=4 @, = ”7* = 1.14n
21 * 2
for k=2 wo = 7T7* =0.57n for k=5 wo = 27T7* > _ l4m
21 * 3 2T * 6
< [ — o = . for k=6 e - 1-7177:
N = e > for k=3 W 5 0.85m for k=6 Wy >
4 4 4 4

Due to symmetricity at (N-1)/2 then there will be an «
exponential term in the expression

1 ““E T (0 ,fork =0
e—jaw 0257 < w < 0.757 ' i | oI fork =1,2
Hd(ejw) — 0 ,0.757'[ <w< 1.257 E : H(k) = 0 ,fOT' k=3 ,4
R
<
—

e Ja®  125p < w <177

P ,fork =5,6

0257[ B T
==Y
“®

N-1 7-1
2 2

I
w
o

where, a = www.iammanuprasad.com
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N—-1

2 ]
) = % H(0) + 2 z re |H(O) ]

ﬂ j2mnk 1 ﬂ j2nnk
=—O+22Re[e k= 7| =X, ZZRB[B_]S e 7 ]
k=1
an
zRe[e - (n-3)]
2| Relp~7 =3 - w-3]]
=§2Re[e 7 @=3)] | spele= /73]
(0 ,fork =0
. 2Ttk
—j35== k=12
2 2m 4m e T
h(n) == lZcos(—(n—B))+2cos<7(n—3))] H(k) = 5 () ,fork = 3,4
.. 21k
ke_]3T ,fork =5,6
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Now /et s calculate h(n) for n = 0 to 6, using symmetric condition ( h(n)=h(N-1-n) )

for n=0
2T
h(0) = [2 COS (—
7
for n=1 )
h(1) = 2 5 21T
— 717"\ 7
for n=2 )
h2) = 2 ) 21
— 717"\ 7
for n=3
2T
h(3) = [2 COS (7

Design of linear phase FIR filter by frequency sampling technique

-3
(1-3
2-3

)

)
)

5 4
)>+ coS <7

o)

(1- 3))'
(2 - 3)>_

= —0.321

for n=4

h(4) =h(7—-1-4) = h(2)

for n=5
h(5) =h(7—1-5) = h(1) = —0.321

for n=6

h(6) = h(7—-1-6) = h(0)
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6
H(Z) = Z h(n)Z~"
n=0

— 2+ h(DZ7 '+ h(2)Z72%2 + Z34+h(4)Z*+h(5)Z°+ 76

A (14+276)—0321(Z" 1+ Z75) + 0.1145(Z72 + Z7%) + A

h(6) = h(7—1—-6) = h(0)

h(5)=h(7—1-5)=h(1) =-0321
h(4) =h(7—1—-4)=h(2) =0.1145
h(3)
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The FIR filters are non recursive type filters(present input depends on the present and previous inputs)
where as IIR filters are recursive type (present input depends on the present, past and output samples)

IR (infinite impulse response) filters are generally chosen for applications where linear phase is not
too important and memory is limited.

They have been widely deployed in audio equalization, biomedical sensor signal processing, 10T/lloT
smart sensors and high-speed telecommunication/RF applications

lIR filter have Impulse responses, hence they can be , all of
which generally have infinitely long impulse responses.

The basic techniques of IIR filter design transform well-known using
First we design an filter and then , hence it is

also called
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An 1IR filter is categorized by its theoretically infinite impulse response, Practically speaking, it is not possible to
compute the output of an IIR using this equation. Therefore, the equation may be re-written in terms of a finite
number of poles p and zeros g, as defined by the linear constant coefficient difference equation

ary(n — k)

NT=

q
y(m) = ) bex(n— k) -
k=0

=1

where, a(k) and b(k) are the filter s denominator and numerator polynomial coefficients, who s roots are equal to
the filter s poles and zeros respectively. Thus, a relationship between the difference equation and the z-transform
(transfer function) may therefore be defined by using the z-transform delay property such that,

> q —k
HZ) = ) y(mzn = k=02
_ __ZighZ
— 1+ Zk=1 akZ k

As seen, the Is a frequency domain representation of the filter.

Notice also that the - and the

Since the poles act on the output data, and affect stability, it is essential that their radii remain inside the unit circle
(i.e. <1) for BIBO (bounded input, bounded output) stability. The radii of the zeros are less critical, as they do not
affect filter stability.
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Specifications for magnitude response of lowpass filter

I
| ’a®
® < paxy 3 ; 'Tmnsmon:
'"Transition,
|
|}

Stopband

Digital Analog Alternate specifications of lowpass filter
w, — Passhand frequency (rad/samples) Q,, — Passband frequency (rad/sec) 2\/_
w; — Stopband frequency (rad/samples) Q, — Stopband frequency (rad/sec) €= 1—
w,. — 3dB cut off frequency (rad/samples) Q. — 3dB cut off frequency (rad/sec)
¢ — Passbhand parameter 8, — Passband error tolerance \/ (1 + 5p)2 — 62
A — Stopband parameter d; — max allowable magnitude in stop band — 5
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Design of steps of IIR Filters

1. Map the desired digital filter specifications into those for an equivalent analog
filter

Derive the analog transfer function for the analog prototype

Transform the transfer function of the analog prototype into an equivalent digital
filter transfer function
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Analog lowpass filter design

Mainly there are two types of analog filter designs
1. Butterworth Filter
2. Chebyshev filter

707

Analog low pass Butterworth Filter
The magnitude function of the lowpass Butterworth filter is

04

o
-
=]
&
&0
o
—
<

H(jQ)| =
|HGQ)| % Where N is the order of the

Q\* filter
[”(a—) ]
| 1.5

Properties of Butterworth filters ) Q.  frequency in radians/sec

1. Butterworth filters are all pole design

2. The magnitude of normalised Butterworth filter is 142 at cut off frequency €,
3. The filter order specified the filter

4. Magnitude is maximally flat at the origin

5. As N increases the response approaches to ideal response
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Analog low pass Butterworth Filter

1

s+1
1

s2++2s+1
1

(s+1D(s*+s+1)

1
(s2 4+ 0.765s + 1)(s2 + 1.848s + 1)
1
(s+1)(s?+0.6185s+1)(s*?+1.618s + 1)
1

(s2+1.931s + 1)(s2 +V2s + 1)(s2 + 0.517s + 1)
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Order of the Butterworth filter

[H($2)|

Let the maximum passband attenuation in positive dB is a, (<3dB) at passband
frequency Q, and a, is the minimum stopband attenuation at stopband frequency €, . The
magnitude function can be written as

. 1
HGQ)| = 1
Q\2N1z
1+ €2 (—) ]
[ Qyp
P—————’{‘_ﬁ_‘\“_—’
Passband g:i:zjﬂ“o" i;"z |
|H(jQ)|2 - Q,, — Passband frequency (rad/sec)

2N
1+ €2 (—)
Q, Q, — Stopband frequency (rad/sec)

e — Passband parameter

Taking log on both sides
A — Stopband parameter

a, - Passbhand attenuation

20log H(jQ) = 10log1 — 101log(1 + €2
gH(Q) E B ) a, — Stopband attenuation

www.iamman uprasad. com



YouTube - IMPLearn

AtQ =0Q,,20logH(jQ) = —ay,

a, = 10log(1 + &%)

Taking antilog on both sides

10%1% =1 + 2

82 | 100.1ap —1

Order of the Butterworth filter

AtQ = Q. ,20logH(jQ) = —a

2N
2 [ {s
as; = 10log| 1 + ¢ 0
p

Taking antilog on both sides

2N
100.1a5 — 1= 82 &
‘QP

<'QS>2N B 100.16(5 —1
Ui g2

('QS>2N B 100.16!5 —1
'Qp

Taking log on both sides and
finding the value of N

100-1as — 1
o8 \/ 100%% — 1

log (3—;)

N =
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Steps to design an analog Butterworth filter

Find the order of the filter N &round off to higher integer
Find the transfer function H(s) for Q.=1 rad/sec for the values of N
Calculate value of cut-off frequency Q.

= W =

Find transfer function Ha(s) for the value of Q. calculated by substituting

S .
S—Q'”H(S)

www.iammanuprasad.com



YouTube - IMPLearn Design an analog Butterworth filter

Q) For given specifications design an analog Butterworth filter

IH(S2)|

0.9 < |H(GQ)| <1for0<Q<02m
|IH(GQ)| <02 for04n <O <m

Solution
1
Q, =0.2n = Y e = 0.484
_ 1
Qs =04r = =0.2 3\ — 4.898 E
Ql
| l ransition | Sto i
Passband :zmd t b:m*;
4.898
log (E) log (252
N = = 04 = 3.34
lo (_S) lo (_n)
5\, 5\0.2n
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1 1
H(S,) = s+1

(s2 4+ 0.765s + 1)(s2 + 1.848s + 1) ‘ 4

s24+V2s +1
1
(s+1)(s?+s+1)

1
(524 0.7655 + 1)(s*+1.848s + 1)
1
(s+1)(s2+0.618s+ 1)(s2+ 1.618s+ 1)

0.27 _ S SR ]
Q. = = = 0.247 (s2+1.931s + 1)(s2 +V2s + 1)(s2 + 0.517s + 1)
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Design an analog Butterworth filter

1
H(S,) =
QY (s2 +0.765s + 1)(s2 + 1.848s + 1)
1
HOR s 72 n 2
S S
((0.24n) +0.765 G757 + 1) ((0.24n) + 1848557+ 1)
0.323

H(s) =

(s2 +0.577s + 0.0577?%)(s? + 1.39s + 0.0576712)
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Q) Design an analog Butterworth filter that has a -2dB passband
attenuation at a frequency of 20 rad/sec and at least -10dB stopband
attenuation at 30 rad/sec

IH(S2)|

Solution

a,| = 2dB
O, = 20rad/sec | p|
Qs = 30rad/sec |as| = 10dB )
Ql
ransition o i
| Passband :zmd ‘ E;n*;
log J100-1as —1 log J100-1*10 —1
01la, __ 0.1%x2 _
N > 10 % — 1 > 10 1 _ oo
lo (&> lo (@) '
5\, 5120
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1 1
H(S,) = s+1

(s2 4+ 0.765s + 1)(s2 + 1.848s + 1) ‘ 4

s24+V2s +1
1
(s+1)(s?+s+1)

1
(524 0.7655 + 1)(s*+1.848s + 1)
1
(s+1)(s2+0.618s+ 1)(s2+ 1.618s+ 1)
1
Q, 20

Q. = = — =21.386 (s2+1.931s + 1)(s2 +V2s + 1)(s? + 0.517s + 1)

- =
(100t@ — 1) (10%1+2 —1)2:4
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Design an analog Butterworth filter

S 2 S 2
(21.386) s o+ (21.386) + 184857 0e + 1

0.20921 x 10°
(s2 + 16.368s + 457.39)(s2 + 39.51s + 457.394)

H(Sn) =
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Design digital filter from analog filter
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Design of IR filter using Impulse invariant method

Here we require that the impulse response of the discrete system (digital filter) be the

discrete version of the impulse response of the analogue system (filter)

» Hence the name impulse invariant

In impulse invariant method the IIR filter is designed such that the unit impulse

response h(n) of digital filter is the sampled version of impulse response of analog filter

Z transform

I\
H(Z) = z h(n)Z—™
n=0

For impulse invariant method we do the mapping as

N
H(Z)|,_ st = Z h(n)e=st
n=0

S=0+j0Q 7 =rel®

reja) — e(a+jQ)T

Equating real and imaginary parts

r=e’"
Real part of analog Imaginary part of
pole =radius of Z- analog pole = angle

plane pole of digital pole
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Y m©
—
Casel:
o=20 <
_ 0T _ -
r=e’ ' =1 ~_|
\ 4
Z - Plane

Impulse invariant mapping map poles from s-plane’s
jQ axis to Z-plane s unit circle

Re(2)

\4

A

S-Plane
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Re' (2)

Y m©
Case 2 :
o < 0 (polesinleft half of S — plane) < >
r=e’l <1
Z - Plane

All S-plane poles with —ve real parts map to Z—plane
poles inside unit circle

A

S-Plane

www.iammanuprasad.com
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Re' (2)

Y m©
Case 3 :
o > 0 (polesinright half of S — plane) < >
r=e’l >1
Z - Plane

Poles in right half of S-plane map to digital poles
outside unit circle

J

A

S-Plane

www.iammanuprasad.com
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Let H_(S) iIs the system function of analog filter

I\
P, = Poles of analog filter

H(s=

- C, — Coefficients in partialfraction expansion

Taking inverse Laplace transform

N
h(t) = Z CePit
k=1

Sample h,(t) at t=nT

CkePleT z~ N

[0
E PkT

=

&)

I
s
=

S
Il
o
=
Il
[

H(z)

= ”MZ

N
h(n) = h(nT) = z C ePrnT
k=1

w
Il
=
—
I
@
o
&
~
N
I
[y

Now taking Z - Transform

H(z) = 2 e
n=0

Ck
H —
a(S) S— P,
k=1
L C
_ k
i) = Z 1 — ePrTz=1
k=1
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Steps to design IR filter using
Impulse invariant method

1. For the given specification find Ha(s), the transfer function of analog filter
Select the sampling rate of the digital filter, T seconds/sample

3. Express the analog filter transfer function as the sum of single pole filters

N
Ck

k=1S — Py

H,(s) =

4. Compute the Z transform of the digital filter by using the formula

= C
k
) = z 1 —ePrTz-1
k=1

TC,
H(z) = T Pl forT <1

k=1 www.iammanuprasad.com
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Q) For the analog transfer function H(s) =

Solution

2

H(s) = s+ 1D(s+2)

Using partial fraction method

Design of IIR filter by impulse invariant technique

(s+1)(s+2)

2=A(s+2)+B(s+1)

Ats=-1 Ats=-2
A=2 = —2

) — 2 2
() s+1) (s+2)
H(s) = —
For T=1 sec

Determine H(z) using impulse invariance method. Assume T=1sec

N
Ck

I —
() L5 P

k

\ C
N E : k
AEU= 1—ePiTz=1
k=1

2
1—e1z71 1 —e 2771

H(z) =

0.465z°1
H(z) = z

1—10.503z71 + 0.0497z2
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Q) An anlog filter has a transfer function H(s) =

invariant method for T=0.2 sec

Solution
10
H —
(s) s24+7s+10

Using partial fraction method

10 A s 2
s24+7s+10 (s+5) (s+2)

10 =A(s+2)+ B(s+5)
Ats=-2
A= -—-3.33 B = 3.33

oo =333 333
=679 512

H(s) =

For T=0.2 sec

S24+7s+10

Design a digital filter equivalent to

this using impulse

N
Ck

:1S_Pk

H(s) =
k

a C
N K
H(z) = Z 1 —ePxTz1
k=1
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Design of IIR filter by impulse invariant technique

Q) Apply impulse invariant method and find H(z) for H(s) =

Inverse Laplace of the given function

h(t) = e~% cos(bt)

For sampling the function substitute t=nT
h(nT) = e~ T cos(bnT)

Taking Z-transform

(0.0)

H(z) = 2 e~ cos(bnT) z7™

n=0

s+a
(s+a)?+b?

> ejbnT + e—jbnT
H — Z —anT ,—n
1 < ibT ,—1\" T ,—jbT.,—1\"
=EZ(e‘aTef z71)" 4 (e7Te=IPT771)
n=0
1 - . n : n
_ Z(e—(a—]b)TZ—l) + (e-(@tin)T,-1)
2n=0
= B 1 1 1
(Z) o E 1 — e—(a—jb)TZ—l + 1 — e—(a+jb)TZ—1]
H ) 1—e % cos(bT)z™ 1
YA —

1—2e 9T cos(bT)z71 + e—2aT z=2
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Steps to design IR filter using
Bilinear transformation method

The basis operation is to convert an analogue filter H(s) into an equivalent
digital filter H(z) by using bilinear approximation

1. From the given specifications find pre-warping analog frequency
using formula

Q=" wn?
— iy

Using the analog frequency find H(s) of the analog filter

Select the sampling rate of the digital filter, call it T seconds per

sample

1—-z"1

Into the transfer function found in step 2

4. Substitute s = ;

14+z~1
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2

Q) Apply bilinear transformation to H(s) =

(s+1)+(s+2)
Solution
2 1+ z71)2
H(s) = 2 : —1)
(s+1)+ (s +2) (3 —2z"1)2
. 2[1-z"1
Substitute s = - l1+z‘1] at T=1sec 510 1+ 2z
A=
(1-0.33z71)
2
H(z) =
1—2z71 1—2z71
(2 1+Z_1] +1) +(2 1+Z_1] +2)
3 2
(1 =—z1+[1+ Z‘l]D ( 1-— 2‘1] )
(2[ 1+ z71 T 21+Z_1 v
2(1 4+ z71)?

T 2-2z2'4+14+z9+@2-2z1+2+2z0)
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Q) Design a digital analog Butterworth filter satisfying the constraints

T
0.707 < |[Hjw)| <1 for0 < w SE

|H(jw)| < 0.2 for%n <w<m

using bilinear transformation. Take T=1sec

o, in dB
Solution
T
= 0.707 c=1 (l)p = —
V1 + €2 2
L _ 02 A= 4.89 Ws = %Tn o]
m Passband ':)';:r(\’sition i;‘:‘z
Q= Etan2
. 2 w
2 w D
= — — .Q. = —tan—
Q. 7 tan > pT 2
, 3_7T ) % = 2.414
_ 4 Q, = —tan=
Q. = ItanT P 1 2
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A
o <_) 4.89 |
_\& log( 1 ) > 1.80 1
= 0 = - = s+
Lo <Q—S) log(2.414) ;
’ | 2 425 +1
S5t S

N =2 : 1
(s+1)(s?+s+1)

1

1
(524 0.7655 + 1)(s*+1.848s + 1)

s24+2s+1 i ‘
(s+1)(s2+0.618s+ 1)(s2+ 1.618s+ 1)

1
(s2+1.931s+ 1)(s2 +V2s + 1)(s2 + 0.517s + 1)

Hy(s) =

= 2 rad/sec

To find H(s) substitute s = Qi 1 4
H(s) = H(s) =
52, 1,8 () =7 28285 + 4
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1
H(s) =
(8) =z 78085 7 2
1
= 2
[2 ] +2.828 (2 ) + 4
A[1 + z71
H(s) = | |

41 —z71] 4+ 5.656[1 — z72] + 4[1 + z~ 1]
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MODULE 4 Realisation of discrete time system

« Adigital filter transfer function can be realized in a variety ways
 Realization of FIR filters
» Realization of IIR filters

« Basic elements required for implementation of an LTI digital system are adder , multiplier and
memory for storing elements

 In digital implementation the delay operation can be implemented by providing a storage register by
each unit delay is required

x1(n) P— ;
x1(n) + x,(n) x(n) » ax(n) — 7-1 IS
x(n) x(n—1)
x2(n)
Adder Multiplier Unit delay
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FIR filter realization

» Mainly four types of realisation are there
1. Direct form realisation
2. Cascade form realisation
3. Linear phase realisation
4. Lattice structure realisation
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Direct form realization

The direct form of FIR may be obtained by using the equation of linear convolution
N-1
y(k) = z h(k)x(n — k) =h(0)x(n)+h(Dx(n—1)+-+h(N—1Dx(n—N—-1)
k=0

Taking Z-transform

Y(z) = h(0)X(2) + h(1)X(2)z" 1 + -+ h(N — 1)X(2)z~ V-V

X(2)

h(0) h(1) h(2) h(N —2) h(N —1)

,@ ,@ _____ .@ >® » Y(2)
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Q) Deétermine the direct form realization of system function

Hz)=1+2z1—-32z72—-4z3+5z7%

Hz)=1+2z1-3z"%2—-4z3+5z7*

Y(z) =X(2)[1+2z71 —327%2—4z73 + 5274]

X(z)
)

1 2 -3 —4 5
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Cascade form realization

Q) Obtain cascade form realization of system function H(z) = (1 +2z ' —z ) (1 +z 1 —z72)

H(z) =

X1(2)

X, (2)

D =
N

www.iammanuprasad.com
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Q) Obtain cascade form realization of system function H(z) =1 + gz‘l +2z7%4+2z73

5
Hz) =1+ Ez_l + 2272+ 2273

X(2) WA S Y@
z3[ 5 NP
=—(1+5z7'+2z72 + 22—3] #
z> | 2
_ 1,32 1 7-1 i
_Z3Z+ZZ + 2z +2] 1
: 2
The term inside the bracket equal to zero when z=-2 2 ’6‘9
So the first term can be (z+2)
1] 1 1
=—|(z+2) <zz +-z+ 1)]
z° | 2
1] 1
=—|-(1+2z7Y (1 + Ez‘l + z—2>]
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=

Q) Realise the system function H(z) = % + gz‘l +z7% + iz‘?’ +z7t + %z‘5 + %2‘6

N =7

h(0) = h(7—-1-0) = h(6)

S
g
\N/

[:]

El]

ﬂ

h(1) =h(7—-1-1) = h(5)

h(2)=h(7—1-2) = h(4)

D= B W RN -

h(3) =h(7—-1-3) =h(3)

H(z)

| |
= (1+2z7°+ = (z7t+27°)

Y.

1
+1.(z7%+z M)+ 7 (z73)

) 4 (Z ) www.iammanuprasad.com
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Q) Realise the system function using minimum number of multiplier
H@) =1+-z7t+,z7 24,234 2744275

N =6

h(0) =h(6—1—-0) =h(5) =

BRlR Wk =

h(1) =h(6—-1—-1) = h(4)

h2)=h(6—-1-2) =h(3) = »

H(z)
=1(1+z7°) + % (z7t+2z7%)

1
+Z(Z_2 + Z_3)

) 4 (Z ) www.iammanuprasad.com
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Q) Realise the system function using minimum number of multiplier
HZ) = +z) (14227142272 +273)

X(z)

E'ﬂ

» Y(2)

& ]
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Conversion of lattice coefficient to direct form filter coefficient

The general equation

m

y(n) = x(0) + ) am(Ox(n— )

k=1

The equations to convert filter coefficients to direct form FIR filter coefficients are

a,(0) =1
an(m) = K,

am (k) = ap_1(k) + ap(m)ay,_1(m = k)
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Q) Consider an FIR filter lattice filter with coefficient K, = %2 K, = 1/3 , K; = %. Determine the
FIR filter coefficients for direct form structure?

Solution

Number of stages (m) = 3

y(n) = x(n) + Z Ay (K)x(n — k) = x(n) + x(n—1) + x(n—2)+ x(n—3)
k=1
For m=3 For m=2 For m=1
a3;(0) =1 a,(0) =1 a.(0) =1
1 1
CZZ(Z) = § al(l) = E
and k=2 e For m=3 and k=1
a3(2) az(1)
= a,(2) + a;(3)a,(1) = a; (1) + a,(2)a; (1) az(1) = (1) + az(3)a,(2)
IR S 111 2 - 1 . )
3 4 2 = E + § : E — § 3 4°3 www.iammanuprasad.com
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Conversion of direct form FIR filter coefficient to lattice coefficient

The general equation

m

y(n) = x(0) + ) am(Ox(n— )

k=1

The equations to convert filter coefficients to lattice form FIR filter coefficients are

Om-1 (0) =1

Km = a(m)

am (k) — am(m)am(m — k)

am—l(k) —

1 — ap(m)

forl1<k<m-1
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A FIR filter is given by the difference equation y(n) = 2x(n) +§ x(n—1) + %x(n —2)+ %x(n — 3) Determine
its lattice form

Solution

y(n) = x() + ) am(K)x(n — k)
k=1

= x(n) + x(n—1)+ x(n—2)+ x(n —3)

y(n)=2[x(n)+ xn—1)+ x(n-2)+ x(n—3)]

Comparing the two equations we get
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For m=3, k=1
2 13
(1) _ C(3(1) — a3(3)a3(2) €32
i N 1—a3(3) - N 0.1687
1-(3
For m=3, k=2
3 12
_ 7 _a3(2) = as(3)az(1) e
_az()— 1—0{%(3) = 12
1-(3)
For m=2, k=1
1 — —
= a,(1) = a;(1) — a2(2)a, (1) 0.1687 — (0.6937)0.1687

1-a3(2)

1 — (0.6937)2
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IR filter Realisation

» Mainly four types of realisation are there

1.
2. Direct form Il realisation
3.

4. Parallel form realisation

Direct form I realisation

Cascade form realisation
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Direct form | realization

Let us consider an IR system described by the difference equation

y(n) = = x(n) y(n)

by wn) N N
@ N

+
Where x(n—1) =4 {9 E}_al y(n—1)

A A

:

buy_1 ’69 E}_aN_l
A A
;
b _
- Ly y(n— M)

www.iamman uprasad. com
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Q) Realise the second order digital filter
y(n) = 2rcoswygy(n — 1) —r?y(n — 2) + x(n) — r coswy x(n — 1)
Solution

w(n) =x(n) —rcoswyx(n —1) y(n) = 2rcoswygy(n — 1) — r2y(n — 2) + w(n)

y(n)

,@ WO .
> 4

—T7 COS Wy EE 2T COS Wy
A
71
2

r

x(n)

www.iammanuprasad.com



YouTube - IMPLearn Direct form | realization

Q) Obtain the direct form | realisation for the system described by difference equation
y(n) = 0.5y(n—1) — 0.25y(n — 2) + x(n) + 0.4x(n — 1)

Solution

wn) =x(n)+ 04x(n—1) y(n) =0.5y(n—1) — 0.25y(n — 2) + w(n)

y(n)

,@ WO .
> 4

0.4

x(n)
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Direct form 11 realization
Let us consider an IR system described by the difference equation

y(n) = +
Y(z) =
The system function can be represented as b
HZH=— W (z) + or 46 W(2) = X(2)
Let
Y@ Y@ W) W(z) = X(2) W(z) W(z) W(z)
X(2) W) X2 Taking inverse z transform we get
Y(z) w(n) = x(n) — a,w(n — 1) w(n - N)
Wz
y(n) =
W(z) 3 |
X(z2) 1+
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Direct form 1l realization

w(n) = x(n) whn—1) w(n—N)
y(n) =
x(n) y(n)

|
|
1
|
$< —ay_q : by_4
|
|
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Q) Realise the second order digital filter using direct form II
y(n) = 2rcoswygy(n — 1) —r?y(n — 2) + x(n) — r coswy x(n — 1)

Solution

Taking Z - Transform
Y(z2) =2rcoswgY(2)z7t —12Y(2)z 2 + X(z) —rcoswy X(2)z™ 1

Y(2)[1 —2rcoswygz ! +1%227%] = X(2)[1 — r cos wy z 1]

1

Y(z) 1—rcoswyz™t
X(z) 1-2rcoswyz !+ r2z2 W(z)
Y(2)

1

W(2) =1—7rcoswyz”

Y(z2) =W(2)[1 —7rcoswyz™!]

Inverse transform
Inverse transform

X(z) 1-=2rcoswyz !+ r2z2
W(z) —2rcoswoW(2)z7t + r*W(2)z™? = X(2)

W(z) =X(z) + 2rcoswyz W (z) —r?z72W(2)

y(n) =wn) —rcoswow(n — 1) w(n) = x(n) + 2rcoswgx(n — 1) — r?x(n — 2)
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y(n) = wn) —rcoswogw(n — 1)z 1 w(n) = x(n) + 2rcoswox(n — 1) — r?x(n — 2)

w(n)

x(n) y(n)
>

>

D M
V7 T

694 2r cosw

A

—T COSW,
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Direct form 1l realization

Q) Determine the direct form Il realisation for the following system
y(n) = -0.1y(n—1) + 0.72y(n — 2) + 0.7x(n) — 0.252x(n — 1)

Solution

Taking Z - Transform

Y(z) = —-0.1Y(2)z71 + 0.72Y(2)z7%2 + 0.7X(2) — 0.252X(z)z~?!

Y(z2)[1+0.1z71 - 0.7227?] = X(2)[0.7 — 0.252z71]

Y(z)  07-0252z71
X(z) 1401z71-0.72z2
Y(2)
= 0.7 — 0.252z71
W (z) z

Y(z) = W(2)[0.7 — 0.252z71]

Inverse transform

y(n) = 0.7w(n) — 0.252w(n — 1)

w(z) 1
X(z) 14+01z71—-0.72z"2

W(z)+01W(2)z7! — 0.72W(2)z? = X(2)

W(z) =Xz —01W(z)z~1t + 0.72W (2)z 2
Inverse transform

wn) =x(n) —0.1wn—1)+ 0.72w(n — 2)
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y(n) = 0.7w(n) — 0.252w(n — 1) wn) =x(n) —0.1lw(n—1) + 0.72w(n — 2)

x(n) w(n) 0.7 y(n)
>

>

AN
b
Z

—0.252

Z

1 1
. .

0.72
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Cascade form realization

Let us consider an IR system with system function

y1(n)

x(n) y(n) x(n) = x;(n) byo = %2(n)
SR S

bko + bk]_Z_l + bkzz_z
Hi(z) =

A A A

bro + b1zt + by pz 2
1+a,.z7t+ a,,,z72

Hy(z) =

—Qy; —by;

e i I A
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Q) Realise the system with difference equation
y(n) = Zy(n —-1) — %y(n —2)+x(n) + %x(n — 1) in cascade form
Solution

Taking Z - Transform

Y(z) = ZY(Z)Z_l — %Y(Z)Z_z + X(2) + %X(Z)Z_l

Y(2) (1 - Ez‘1 + %z‘zl = X(2) [1 + %2_1]

4
1 _
Y(z) 1+3z 1
X(z) .3 1.1
1 42 +8z
1 4
Y(Z)_ 1+—Z

_ 3
AT e
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x(n) = x4 (n) T\

y1(n)
= x3(n)

y2(n)

W =

1

N |

D

D

=
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Parallel form realization

A parallel form realisation of an IIR system can be obtained by performing a partial expansion

N
Ck
_ H(z) = C
H(z) = C+z 1Pz @ =ty it Top, 1t T T
k=1

Y(z) =cX(z)+ H(2)X(z) + H,(2)X(z) + -+ Hy(2)X(2)

C

Hy(2) '9

) 4

o 6

x(n)
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Parallel form realization

Q) Realise the system given by difference equation
y(n) =—-01y(n—1) 4+ 0.72y(n — 2) + 0.7x(n) — 0.25x(n — 2) in parallel form

Taking Z - Transform

Y(z) = -0.1Y(2)z71 + 0.72Y(2)z7? + 0.7X(2) — 0.25X(2)z "2
Y(z2)[1+ 0.1z71—0.72z7%] = X(2)[0.7 — 0.25z7?]

0.7—0.25z2

H(Z) — 1+ 0.1z71-0.72z72

—0.035z"1+0.35
14+0.1z71-0.722z72

= 0.35 +

O AN]) N 0.144
14+09z71 1-0.8z1

= 0.35 +
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Parallel form realization

0.206 N 0.144
14+09z71 1-0.8z71

H(z) = 0.35 +

y(n)
>

0.35
v
x(n) TN\ 0.206
% D
—-0.9
'm 0.144 'ff\
\y \ U
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Multl rate DSP

* The processing of a discrete time signal at different sampling rates in
different parts of a system is called multi rate DSP

* Discrete time system that employ sampling rate conversion while
processing the discrete time signal are called multi rate DSP system

* The process of converting a signal from one sampling rate to another
sampling rate are of two types
* Down sampling or decimation
« Up sampling or interpolation
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Down sampling

* It is the process of reducing the sampling rate by an integer factor D or M

* Down sampled signal of x(n) can be obtained by simply keeping every
Mt sample and removing (M-1) in between samples

x(n) I v () = x(Mm)

x(n) ={1,-1,2,4,0,3,2,1,5} for M=2

x(Mn) =1{1,2, 0, 2, 5}
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Spectrum of the down sampled signal

Y(e/®) = %Vlzlx(ef(w_zvzznk))

» If the Fourier transform of the input-signal of a down samples in X(e/®), then the
Fourier transform Y(ef‘“_) of the output signal y(n) is a sum of M uniformly shifted and
stretched version of X (e/¢) scaled by a factor of 1/M
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Q) Consider a spectrum of input signal X(ef‘“) with a bandwidth of — g to g shown , when the signal is down

sampled by a factor D, sketch the spectrum of a down sampled signal for sampling rate reduction factor
D=2,3 A

A

21 _3711 -7 —g 0 g T 37” 27 :
For M/D=2
X When D=2
Y(e/®) = %z X(ej(w_zznk)) Bandwidth =D.BW =27

k=0

Y(ej‘“) = %X(ej(%)) + %X(ej(w_zzn))
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2
'
1
2
) g = 3 = 3 5 7 g
—4r S -3 —— -2 _om —TT i 0 — i 21T ] 3T - A
2 y 2 2 4 1 2 2 y 2
(W—2TT
=X (e 4 ( 2 ) )
2
) V41 5w n >
—4r - -3 - —27 i - T 0 — L 2 Sm 3 m 4aT
2 2 2 y A 2 2 Y 2
> - = >
—4m _r -3 _or —-27 L -7 ) 0 r 3n 21 i s m i
2 7 2 2 2 2 www.iammanuprasad.cam
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Q) Consider a spectrum of input signal X(ef‘“) with a bandwidth of — g to g shown , when the signal is down

sampled by a factor D, sketch the spectrum of a down sampled signal for sampling rate reduction factor

D=2.3
) 3 TCAT[ 37/\
2T —7 —E 0 E 7 2
For M/D=3
When D=3
) 1 2 a) an _ _
Y(ejw) = §Z Bandwidth =D.BW =3x

Y(ej‘“) = %X(e ( )) + 3X(e (w Zn)) + 3X(e (w 34n))
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YouTube - IMPLearn —X(eJ(B)) Y(eja)) — lX(eJ(g)) + lX(e](T)) + lX(e]( 3 ))
3 ! 3 3 3
< y y >
7 /(4 3 7
_r —3r —5—n —2m _3_n —TT I 0 = (4 °n 21 5—” 3 _ad 4
Y 2 2 2 2 2 y 2
1 (W—2T
—X eJ( 3 ))
3
) 7 - 7 g
——n -3 _5_1T -2 _3_1r —TT _T 0‘ — T 3_11' 2T 5_1r 3t n A
2 2 2 2 2 2 y Y
1 (W—4AT
—X ej( 3 ))
3
7 5 - 3 5 7 g
T —3n 2 —2T _3_7[ —TT I 0 = yi4 il 2T i 3 n i
2 2 2 2 * 2 2 2 2
_ 7_11: —31 _ 5_11' —21 _ 3_” —T i 0 al T 3_” 21T ?u’zﬂ:w. iammgamuprasad. Zathn 41T
2 2 2 2 2 y 2 Y



YouTube - IMPLearn

Anti-aliasing filters

* In order to avoid aliasing the input signal should be band limited to #z/D for
decimation by a factor of D

Anti-aliasing
filter
x(n) y(n) = x(Mn)
» h(n) F— *M >
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Up sampling

* It is the process of increasing the sampling rate by an integer factor | or L

« Up sampled signal of x(n) can be obtained by a factor of L by L-1 equally
spaced zeros between each pairs of samples

) y(m) =x (%)

> L

x(n) =1{1,2,3,4,5} for I/L=3

X (%) ~{1,0,0,2,0,0,3,0,0,4,0,0 }
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Spectrum of the up sampled signal

{CER(Ch

» The term X(e/®7) is the frequency compressed version of X(e/®) by a factor I.

« If the frequency response is periodic with 2z , the X (ef“” ) will repeat | times in a period
of 0 to 2= in the spectrum of up sampled
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Q) The spectrum of discrete time signal is shown below. Draw the spectrum of the signal if it is upscaled by

1=2,3
A
« - - >
4w T 3p M L, Bm - _z 0 T - 11 - 408 3 Z A
2 2 y 2 2 y y3 2
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For | or L=2

Y(e/?) = X(e/?®)
When 1=2

Bandwidth =BW/l ==«

3n
2T 5 —T
For | or L=3
When 1=3
Bandwidth =BW/l =27/3
3
21 == —TT
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Anti-imaging filters

«  When up sampled by a factor of I, the output spectrum will have | images in each
period with each image bandwidth to ?

« Since the frequency spectrum in the range to 0 to % are unique and we have to
filter the other images

* Hence the output of up samples is passed through a lowpass filter with band
width =
I

 Since the lowpass filter is designed to avoid multiple images in output spectrum,
it also called anti-imaging filter

Anti-imaging
filter

x(n) *) h(n) >y(n)
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MODULE 5 Digital Signal Processors

« The programmable digital signal processors (PDSPs) are general purpose
microprocessors designed specifically for digital signal processing applications.

« They contain special architecture and instruction set to execute computation -
Intensive DSP algorithms more efficiently.

« General purpose digital signal processors: These are basically high-speed
microprocessors with architecture and instruction sets optimized for DSP
operations.

 Special purpose digital signal processors: These types of processors consist of
hardware 1) designed for specific DSP algorithms such as FFr, i1) hardware
designed for specific applications such as PCM and filtering.
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Harvard Architecture

The term Harvard originated from the Harvard Mark 1 relay-based computer which stored instruction on
punched tape and data in relay latches

The Harvard architectures physically separate memories for their instructions and data, requiring dedicated
buses for each of them.

Instructions and operands can therefore be fetched simultaneously.

Most of the DSP processors use a modified Harvard architecture with two or three memory buses; allowing
access to filter coefficients and input signals in the same cycle.

Since it possesses two independent bus systems, the Harvard architecture is capable of simultaneous reading an
Instruction code and reading or writing a memory or peripheral as part of the execution of the previous
instruction.
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Pipelining

« To improve the efficiency, advanced microprocessors and digital signal processors use an approach

called pipelining in which different phases of operation and execution of instructions are carried out
In parallel.

* In modem processors the first step of execution is performed on the first instruction, and then when
the Instruction passes to the next step, a new instruction is started.

The Fetch phase(F) in which the next instruction is fetched from the address stored in the program counter.

The decode phase (D) in which the instruction in the instruction register is decoded and the address in the program
counter is incremented

Memory read (R) phase reads the data from the data buses and also writes data to the data buses.

The Execute phase (X) executes the instruction currently in the instruction register and also completes the write
process.

Instruction 1

Instruction 2

Instruction 3
Instruction 4
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Multiply Accumulate Unit (MAC)

The Multiply-Accumulate (MAC) operation is the basis of many digital signal processing algorithms

In digital signal processing, the multiply—accumulate (MAC) operation is a common step that
computes the product of two numbers and adds that product to an accumulator.

The hardware unit that performs the operation is known as a multiplier—accumulator (MAC unit); the
operation itself is also often called a MAC

The MAC speed applies both to finite impulse response (FIR) and infinite impulse response (IIR)
filters. The complexity of the filter response dictates the number MAC operations required per

sample period.

A multiply-accumulate step performs the following:
* Reads a 16-bit sample data (pointed to by a register)
» Increments the sample data-pointer by 2
» Reads a. 16-bit coefficient (pointed to by another register)
» Increments the coefficient register pointer by 2
« Sign Multiply (16-bit) data and coefficient 'to yield a 32~bit result
« Adds the result to the contents of a 32-bit register pair for accumulate.
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TMS320C67xx - Digital Signal Processor

The TMS320 DSP family consists of fixed-point, floating-point, and multiprocessor digital signal
processors (DSPs).

TMS320 DSPs have an architecture designed specifically for real-time signal processing.

With a performance of up to 6000 million instructions per second (MIPS) and an efficient C
compiler, the TMS320C6000 DSPs give system architects unlimited possibilities to differentiate
their products.

» High Performance
» Ease of use
 affordable pricing

The C6000 devices execute up to eight 32-bit instructions per cycle. The C67x CPU consists of 32
general-purpose 32-bit registers and eight functional units.

These eight functional units contain:

« Two multipliers
« SixXALUs
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TMS320C67xx DSP Architecture

DMA Controller (C6701 DSP only) transfers data between address ranges in the
memory map without intervention by the CPU. The DMA controller has four
programmable channels and a fifth auxiliary channel.

EDMA Controller performs the same functions as the DMA controller. The EDMA has 16
programmable channels, as well as a RAM space to hold multiple configurations for future transfers.

HPI is a parallel port through which a host processor can directly access the CPU’s memory space.
The host device has ease of access because it is the master of the interface. The host and the CPU can
exchange information via internal or external memory. In addition, the host has direct access to
memory-mapped peripherals.

Expansion bus is a replacement for the HPI, as well as an expansion of the EMIF. The expansion
provides two distinct areas of functionality (host port and /O port) which can co-exist in a system.
The host port of the expansion bus can operate in either asynchronous slave mode, similar to the HPI,
or in synchronous master/slave mode. This allows the device to interface to a variety of host bus
protocols. Synchronous FIFOs and asynchronous peripheral 1/0O devices may interface to the
expansion bus.
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TMS320C67xx DSP Architecture

« McBSP (multichannel buffered serial port) is based on the standard serial port interface found on the
TMS320C2000 and TMS320C5000 devices. In addition, the port can buffer serial samples in
memory automatically with the aid of the DMA/EDNA controller. It also has multichannel capability
compatible with the T1, E1, SCSA, and MVIP networking standards.

« Timers in the C6000 devices are two 32-bit general-purpose timers used for these functions:

* Time events

* Count events

» Generate pulses

* Interrupt the CPU

« Send synchronization events to the DMA/EDMA controller.

« Power-down logic allows reduced clocking to reduce power consumption. Most of the operating
power of CMOS logic dissipates during circuit switching from one logic state to another. By

preventing some or all of the chip’s logic from switching, you can realize significant power savings
without losing any data or operational context.
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Finite Word length Effects

 In the design of FIR Filters, the filter coefficients are determined by the system
transfer functions. These filters co-efficient are quantized/truncated while
Implementing DSP System because of finite length registers.

« Only Finite numbers of bits are used to perform arithmetic operations. Typical word
length Is 16 bits, 24 bits, 32 bits etc.

 This finite word length introduces an error which can affect the performance of the
DSP system.

e Input quantization error
« Co-efficient quantization error
* Overflow & round off error (Product Quantization error)
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Quantization Error

» The effect of error introduced by a signal process depend upon number of factors including the.
» Type of arithmetic
« Quality of input signal
* Type of algorithm implemented
« For any system, during its functioning, there is always a difference in the values of its input and

output. The processing of the system results in an error, which is the difference of those values. The
difference between an input value and its quantized value is called a Quantization Error.

Original
and
Quantized
Signal

Quantization
Error
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Input quantization error

« The conversion of continuous-time input signal into digital value produces an error which is known
as Input quantization error. This error arises due to the representation of the input signal by a fixed
number of digits in A/D conversion process

e(n) = x4(n) —x(n)
xq(n) — sample quatised value For example, let z(n) = (0.70),0 = (0.10110011...)2

x(n) - input value U
add

After rounding z(n) to 3 bits we have

Te(n) = 0.101
add
1

Now the error

e(n) = z4(n) — z(n) = 0.05

which satisfics the inequality.
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Product Quantization error

 In fixed point arithmetic the product of two b-bit numbers results in 2b bits long. In DSP applications
It 1S necessary to round this product to b-bit number which produce an error known as product
quantization error or product round off noise

xq(n) T\ Z(n) = axgy(n) + e(n)

>

e(n)

« The multiplication is modelled as an infinite precision multiplier followed by an adder where round
off noise is added to the product so that overall result equals some quantization level

. For any n, the error sequence e(n) is uniformly distributed over the range - |
: ; ; " : 5 o e,
and Z . This implies that mean value of e(n) is zero and its variance Is o, =

-2t

12
. The error sequence e(n) is a stationary white noise sequence.

. The error sequence e(n) is uncorrelated with the signal sequence z(n). Thus

each noise source is modeled as a discrete stationary white random process
n—2b

with a power density spectrum of =5-. www.iammanuprasad.com
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Coefficient quantization error

* In the design of a digital filter the coefficients are evaluated with infinite precision.

* But when they are quantized, the frequency response of the actual filter deviates
from that which would have been obtained with an infinite word length
representation and the filter may actually fail to meet the desired specifications.

« |If the poles of the desired filter are close to the unit circle, then those of the filter
with quantized coefficients my lie just outside the unit circle

www.iamman uprasad. com



e e Coefficient quantization error

e Consider a second order IIR filter with

_ - 1.0
(1-0.52-1)(1 — 0.45z1)

find the effect on quantization on pole locations of the given system function in direct
form and in cascade form . Take b = 3 bits.

H(z)

Solution

Direct Form I

We can write H(z) = 1

(1 -0.952-1 +0.2252-2)
(0.95)16 = (0.1111001...)s
(=0.95)10 = (1.1111001...)

After truncation we have (1.111)7 = —0.875. Similarly

(0.225)10 = (0.001110...),

After truncation we have (0.001)2 = 0.125
1

R0 Him= (1 - 0.875z-1 + 0.1252-2)

Cascade form
Hiz) = 1 After truncation we have (1.011)3 = (—0.:
(2) = A =052-1)(1 = 0.452-1)

So.. H{z) =

(—0.45)10 = (1.01110...)
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